

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	BE (Electronics Engineering)				SEM: VII				
Course Name: Instrumentation System Design (ISD)				Course Code: PCC ELE-701					
Teaching Scheme (Program Specific) Examination				on Scheme (Form	ative/ Summa	tive)			
Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation					tion				
Hours Per Week			Theory (100)		Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	OR	TW	
3	-	2	5	4	25	75	25	25	150
IA :In Semester Examination - Paper Duration – 1.5 Hours									
ESE : End Semester Examination - Paper Duration - 3 Hours									
Prerequ	isite: EMN	AI. PCS							

<u>Course Objectives:</u> To impart knowledge about the basic functions and working of various components used in Instrumentation systems, and process control and to apply them for various applications in Industrial Process control. Students also get awareness of various representations and symbols to analyze and evaluate the system.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT Levels
1	Explain the needs of advancement in instrumentation systems	Understand (U)
2	Select and design proper components for signal conditioning circuits	Remember (R
3	Choose the proper controller for given process application	Apply(A)
4	Understand programmable logic controller design, PLC operation	Understand (U)
	programming the PLC	
5	Design the Data acquisition system (DAS) & Supervisory control system	Evaluate(E)
	(SCS)	
6	Design and simulating Regulators and power supplies for industrial	Evaluate(E)
	instrumentation	

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Detailed Syllabus: Module Topics Hrs Cognitive No. Levels as per RBT INTRODUCTION TO INSTRUMENTATION SYSTEM Understand 1 DESIGN (U). 1.1Review the various measurement techniques of temperature, Remember (R) pressure, flow and level, application and selection of sensors Apply Recent trends in Virtual instrumentation, Intelligent (A) 1.2 5 Evaluate(E) instrumentation systems. Design aspects for system level design 2 DESIGN OF SIGNAL CONDITIONING CIRCUITS Understand 2.1 Principles of analog & digital signal conditioning – Importance (U). of signal conditioning ,signal level & bias change, linearization, Remember (R) conversion, filtering & impedance matching, concept of loading, Apply comparators & converters (A) amplifier Evaluate(E) 2.2Design of operational based circuits in instrumentation - analysis of voltage divider circuits, bridge 8 circuits, RC filters, inverting & non-inverting amplifier, instrumentation amplifier, Use of V to I & I to V converter, integrator, differentiator & linearization (with applications) 3 PROCESS CONTROLLER PRINCIPLES Understand 3.1Types of controllers, Discontinuous controller – two position (U), Remember (R) mode, multi-position mode & floating mode 3.2Continuous controllers – single mode (P, I & D) & composite Apply 8 (A) mode (PD, PI & PID), split range, auto select, ratio & cascaded controllers, selection criterion of controller for a process mode 3.3 Tuning of PID controller – process loop tuning, open loop transient response method, Ziegler - Nichols tuning method, frequency response methods (numerical examples on PID tuning) 4 PROGRAMMABLE LOGIC CONTROLLERS (PLC) Understand .4.1Discrete state process controller – discrete state variables, (U). process specifications & event sequence description Remember (R), Analyze 4.2Relay controller & ladder diagram – introduction to relay ladder 8 (AZ)diagram logic, ladder diagram elements & ladder diagram Evaluate (E) programming examples 4.3PLC – relay sequencers, programmable logic controller design, PLC operation programming the PLC, PLC software functions (application examples on relay ladder logic programming) 5 DIGITAL BASED PROCESS CONTROL Understand 5.1Data acquisition system (DAS) – objectives, signal conditioning (U), of inputs, single channel DAS, multi-channel DAS, computer based DAS, data logger, difference between DAS & data logger 8 Remember (R) 5.2Computer aided process control – architecture, human machine interface (HMI), supervisory control & data acquisition (SCADA), Apply standard interfaces (RS-232C, RS-422A & RS-485) (A)

Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019
--

_

	5.3Supervisory control system (SCS), introduction to the Field bus		Analyze
	& Profibus process controlled networks, overview of distributed		(AZ)
	control system (DCS), features & advantages of DC		
6	Industrial Instrumentation		Remember
	6.1PC & microcomputer based instrumentation, virtual		(R)
	instrumentation & Lab VIEW introduction	8	Understand
	6.2Calibration and response of industrial instrumentation –		(U),
	standard testing methods and procedures - Generalized		Apply
	performance characteristics – static response characterization –		(A)
	dynamic response characterization - zero order system dynamic		
	response characterizations - first order system dynamic response		
	second order system dynamic response - higher order systems -		
	Response to different forcing functions such as step, sinusoidal etc.		
	to zero, first, second third and higher orders of systems.		
	6.3.Regulators and power supplies for industrial		
	instrumentation		
	linear series voltage regulators – linear shunt voltage regulators –		
	integrated circuit voltage regulators		
	-pH and conductivity sensors. Piezo-electric and ultrasonic sensors		
	and its application in process and biomedical Instrumentation.		
	Measurement of viscosity, humidity and thermal conductivity		
	Total No of Lectures 45		

Books and References:

SN	Title	Authors	Publisher	Edition	Year
1	Process Control	Curtis D.	PHI	7 th Edition	2014
	Instrumentation Technology	Johnson			
2	Industrial Instrumentation &	S. K. Singh,	McGraw Hill	3 rd Edition	
	Control				2015
3	, Instrumentation	B.C. Nakra &	McGraw Hill	3 rd Edition	
	Measurement & Analysis,	K. K.			2010
		Chaudhary,			
4	Pneumatics & Hydraulics,	Andrew Parr,	Jaico	India	2011
			Publishing Co.	Special	
				Edition	
5	Handbook of Process	B. G. Liptak	CRC Press	4thedition	2010
	Control & Instrumentation				
6	Fundamentals of Industrial	William C.	McGraw Hill	1st edition,	2009
	Instrumentation & Process	Dunn,			
	Control,				
7	Supervisory Control of	John O	PHI,	PHI,	2002
	discrete event systems using	Moody, Paros			
	petrinets,	J Antsaklis,			
8	, Process/Industrial	Gregory K.	Mc Graw Hill	5th Edition,	1999
	Instruments and Controls	McMillan,	1999		
	Handbook,				

 Douglas M.

 Considine

Suggested List of Practical/ Experiments:

Practica	Type of	Practical/ Experiment Topic	Hrs.	RBT
1	Experiment			Levels
Number	-			
		To understand the operation of various		Understan
1	Basic Experiments	Sensors	2	d (U),
-	-	To understand use of sensors in		Understan
2		industrial applications	2	d (U),
2		Design of instrumentation amplifier for	2	Apply (A)
3		variable voltage gain		
		Design of signal conditioning circuits		Apply (A)
4		for LDR / thermistor / RTD / strain	2	
4		gauge		
_		Implementation of P-I-D controller		Apply (A)
5		using Simulink/MATLAB	2	
	Design	Implementation of PLC ladder diagram		Apply (A)
6	Experiments	for given application	2	FF - J ()
		8- · · · · · · · · · · ·	_	
7	Basic Experiments	Study of SCADA & HMI		Understan
,			2	d (U),
		Designing of data acquisition system		Apply (A)
8	Development	(DAS)	2	
	Experiment			
9		Simulating a simple process using Lab	_	Apply (A)
		VIEW	2	
		Design and simulating Regulators and	2	Apply (A)
10		power supplies for industrial		
		instrumentation		
		*Mini Project:		
	Mini/Minor	1. Signal Conditioning Applications	10	
	Projects/ Seminar/	2. PLC Application used to start and	12	Create (C)
	Case Studies	stop the motors of the conveyor		
		belt		
		5. Process Controller Applications		
11-15		4. PLC Motor Control 5. Designing and Varifying Fault		
		5. Designing and verifying Fault		
		6 Date Acquisition System		
		(DAS) Applications		
		(DAS)Applications *Case study:		
		1 Digital Control Valvas salasting		
		control valves & its applications		
4 5 6 7 8 9 10 11-15	Design Experiments Basic Experiments Development Experiment Mini/Minor Projects/ Seminar/ Case Studies	Design of signal conditioning circuits for LDR / thermistor / RTD / strain gauge Implementation of P-I-D controller using Simulink/MATLAB Implementation of PLC ladder diagram for given application Study of SCADA & HMI Designing of data acquisition system (DAS) Simulating a simple process using Lab VIEW Design and simulating Regulators and power supplies for industrial instrumentation *Mini Project: 1. Signal Conditioning Applications 2. PLC Application used to start and stop the motors of the conveyor belt 3. Process Controller Applications 4. PLC Motor Control 5. Designing and Verifying Fault Detection Logic 6. Data Acquisition System (DAS)Applications *Case study: 1. Digital Control Valves-selecting control valves & its applications	2 2 2 2 2 2 2 12	Apply (A) Apply (A) Apply (A) Understan d (U), Apply (A) Apply (A) Create (C)

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	2. Modelling and Simulating a	
	Multistage Process	
	3. Procedure of PLC Programming in	
	Industries	
2	4. Piezo-electric and ultrasonic	
	sensors and its application in	
	process and biomedical	
	Instrumentation.	
((*All the students Group of 03	
S	students in one group will do the	
8	above work)	

B.E. (Electronics Engineering)				B.I	E SEM: VII				
Course Name: VLSI Design				Course Co	de: PEC-ELE	7011			
Teaching Scheme (Program Specific)				Examination	scheme				
Modes of Teaching / Learning / Weightage Modes of Continu					of Continuous Ass	essment / Evalu	ation		
Hours Per Week-Theory (100)				Practical/Oral	Term Work	Total			
				(25)	(25)				
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	PR&OR	TW	
Hours 150							150		
3 - 2@ 5 5 25 75 25 25									
	IA :Internal Assessment - Paper Duration – 1 Hour								

ESE :End Semester Examination - **Paper Duration** - 3 Hours

The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance (20%)

Prerequisite: PCC-ELE302: Digital Circuit Design, PCC-ELE301/402: Analog Electronics-1 &II, PCC-ELE403: Microprocessors and Computer Organization

<u>Course Objective</u>: To impart the knowledge about VLSI design trends, methodologies and allied systems used in digital design.

Course Outcomes: Students will be able to:

SN	Course Outcomes	Cognitive Levels as per Blooms Taxonomy
1	Demonstrate a clear understanding of choice of technology and technology scaling, Define scaling, list various capacitances in MOSFET, Explain different models of MOSFETs.	L1,L2
2	List different parameters ,Concept of static and dynamic analysis, compare different types of Inverters .	L1,L2,L3,L4
3	Explain different design styles used in digital design like PTL, Transmission gates etc. Implement concept of sizing. Implementation of various circuits using different design styles.	L1,L2,L3
4	Explain different memory structures, explain working of memory units, its modes of operation and its peripheral circuitry.	L1,L2,L3
5	Explain different types of adder circuits, Compare it's performance. Explain multiplier circuits and allied circuitry.	L1,L2
6	Explain clocking phenomenon ,clock generation and distribution. Understand importance of Low power design , Explain Interconnect model and scaling.	L1,L2,L3

Module No.	e Topics		Cognitive Levels as per
			Blooms Taxonomy
1	Technology Trends		L1,L2
	Technology Comparison: Comparison of BJT and MOS technology	6	
	MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models, MOSFET capacitances.		
2	MOSFET Inverters	8	
	Types of MOS inverters: Active and passive load and their comparison.		L1.L2.L3.L4
	Circuit Analysis of MOS Inverters:		
	Static Analysis resistive and CMOS inverter, Design of symmetric CMOS inverter.		
	Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and		
	Logic Circuit Design: Analysis and design of 2-I/P NAND.NOR and complex		
	Boolean function using equivalent CMOS inverter for simultaneous switching.		
3	MOS Circuit Design Styles		L1,L2,L3
	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo	8	
	NMOS, Dynamic, Domino logic etc.		
	Circuit Realization: Basic gates, SR Latch, Basic Flip-Flops, MUX using above		
	design styles.		
4	Semiconductor Memories	8	L1,L2,L3
	SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write circuits,		
	sense amplifier. DRAM : 1T_DRAM, operation modes, leakage currents, refresh		
	operation, physical design.		
	ROM Array : NAND and NOR PROM, Nonvolatile read/write memories		
	classification and programming techniques.		
5	Data Path Design	6	1112
	Adder: Ripple Carry adder, CLA adder, Manchester carry chain and high speed		L1,L2
	Multipliers and shifter: Array multiplier and barrel shifter		
6	VI SI Clocking and System Design	9	
0	Clocking: CMOS clocking styles. Clock generation, stabilization and distribution		L1.L2.L3
	Low Power CMOS Circuits: Various components of power dissipation in CMOS.		21,22,20
	Limits on low power design, low power design through voltage scaling, I/O pads		
	and Power Distribution .		
	Interconnect: Interconnect delay model, interconnect scaling and crosstalk.		
Books	and References:		

S. No.	Title	Authors	Publisher	Edition	Year
1	VLSI Design	Debaprasad Das	Oxford	1 st Edition	2011
2	Low-Power CMOS VLSI Circuit Design	Kaushik Roy and Sharat C. Prasad	Wiley	Student edition	2009
3	CMOS VLSI Design	Neil H. E. Weste, David Harris and Ayan Banerjee	Pearson Education	3 rd edition	2009
4	CMOS Digital Integrated Circuits Analysis and Design	Sung-Mo Kang and Yusuf Leblebici	Tata McGraw Hill, 3rd Edition.	3 rd edition	2011

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.udemy.com	https://www.udemy.com/course/svac_c1_ic_desig	M1,M2,M3
		n_manufacturing_process/	
2	www.online.stanford.edu	https://online.stanford.edu/courses/ee271-	M1,M2,M3,M6
		introduction-vlsi-systems	
3	www.classcentral.com	https://www.classcentral.com/course/swayam-	M1,M2,M3,M4,M5.
		cmos-digital-vlsi-design-12964	M6
4	www.mooc-list.com	https://www.mooc-list.com/course/vlsi-cad-logic-	M3,M4,M5,M6+adv
		layout-coursera/	ance topics

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments:

Work to be done	Hrs.
Identification and Study of Design Methodologies	8
Project Title Identification	2
Designing of different modules	2
Testing of modules using Micro wind /Open-Source platforms	6
Debugging and modification in circuit design	6
Testing of Mini Project	2
Preparation of Report	4
Total Hours	30

	B.E. (Electronics Engineering)				B.	E. SEM: VII			
Course Name: Mobile Programming				Course C	ode: PEC-ELI	E7012			
T	eaching Scl	neme (Progi	am Specif	ic)	Examination scheme				
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Mo	des of Cor	ntinuous Asses	ssment / Evalu	ation
	Ho	ours Per We	ek		Theo	ry (100)	Practical/	Term	Total
							Oral (25)	Work (25)	
Theor	Tutoria	Practica	Contac	Credit	IA	ESE	OR	TW	
У	1	1	t Hours	S					150
									150
03	-	02@	05	4	25	75	25	25	
		IA	Internal A	ssessment	- Paper	Duration –	1.5Hour		
	ESE : - Semester End Examination Paper Duration - 3 Hours								
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
completion of practical (40%) and Attendance (20%)									
Prerequ	isite: Digita	l Communic	ation, Com	puter Com	municat	ion Netwo	rks		

Course Objectives: The course intends to deliver the role to study, understand and appreciate the concepts of mobile communication technology.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Understand the fundamentals of mobile communications	L1, L2
2	Differentiate between GSM and CDMA	L1, L2, L3
3	Understand the evolving wireless communication technologies.	L1, L2, L3, L4
4	Understand the requirement of 4 G technology	L1, L2, L3
5	Understand the fundamentals 3G and 4G, LTE, WiMAX	L1, L2, L3, L4
6	Understand the Mobile Adhoc Network, Mobile IP and Mobility	L1, L2, L3, L4
	Management, Wireless Sensor Networks	

Module	Topics	Hr	Cognitive levels of
No.		S	attainment as per
			Bloom's Taxonomy
	Cellular Communication System		
	Introduction to Cellular Communications, Frequency reuse, Multiple		
	Access Technologies		
1	Cellular Processes: Channel assignment, Call Setup, Handoff	7	L1, L2
	strategies, interferences and system capacity		
	Traffic Theory: Trunking and grade of service, improving system		
	capacity		
	GSM		
	GSM Network architecture, signaling protocol architecture, identifiers,		
2	channels, Frame structure, speech coding, authentication and security,	7	L1, L2, L3
	call procedure, handoff procedure, services and features		
	CDMA digital cellular standard (1S-95).		
3	Frequency and channel specifications of IS-95, forward and reverse	8	
	CDMA channel, packet and frame formats, mobility and radio	0	L1, L2, L3, L4
	resource management		
	3 G Mobile Communication System		
	2.5 G TDMA Evolution Path, GPRS, EDGE , 2.5G CDMA one		
4	cellular N/W, Need of 3G Cellular N/w, IMT 2000 Global Standard,	8	L1, L2, L3
	UMTS Technology, W-CDMA Air interface, TD-SCDMA		
	Technology, CDMA 2000 Cellular Technology		
	4G Wireless Standards		
5	Need for 4G network, difference between 3G and 4G, LTE, WiMAX	7	L1, L2, L3, L4

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	Emerging Technologies		
6	Mobile Adhoc Network, Mobile IP and Mobility Management,	8	L1, L2, L3, L4
	Mobile TCP, Wireless Sensor Networks, RFID Technology		
	Total Hours	45	

Books and References:

Sr.	Title	Authors		Edition	Year
No.					
1	Wireless Communications	eless Communications Theodore S. Rappaport, Prentice H		-	-
2	Mobile & Personal	K.C. Laudon and J.P.	Prentice Hall	-	-
	Communication system &	Laudon			
	Services				
3	Principles of Wireless Networks	KavehPahlavan,Prashant	Prentice Hall	-	-
		Krishnamurthy			
4	Wireless communication and	Vijay Garg,	ELSEVIER	-	-
	Networking- Inc		Inc		
5	Wireless communication-	Singhal	TMH	-	-
6	Fundamentals of Wireless	David Tse and	Publisher,	-	-
	Communications.	PramodViswanath,	Cambridge		
			University		
			Press		
7	7 Wireless Communications Andrea Goldsmit		Cambridge	-	-
			University		
			Press		
8	Wireless Communications &	ItiSahaMisra	ТМН	3 rd	2011
	Networks 3Gand Beyond				

Online References:

Sr.	Website Name	URL	Modules
No.			Covered
1.	https://www.tutorialspoint.com>wirel ess_communication_cellular_networ ks	vor unication/wireless_communication_cellular_ne tworks.htm	
2.	https://www.tutorialspoint.com > gsm	https://www.tutorialspoint.com/gsm/	M2
3.	https://www.tutorialspoint.com > third-generation-3g-mobile-phones	https://www.tutorialspoint.com > cdma > cdma_introduction https://www.tutorialspoint.com/third- generation-3g-mobile-phones	M3
4.	https://www.tutorialspoint.comcomm unication_technologies > communi	https://www.tutorialspoint.com/communication _technologies/communication_technologies_m obile.htm	M4
5.	https://www.tutorialspoint.com > lte	https://www.tutorialspoint.com/lte/index.htm	M5
6	https://www.tutorialspoint.com > mobile_computing>mobile_computin g_	https://www.tutorialspoint.com/mobile_comput ing/mobile_computing_trends.htm	M6

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

TCET

Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Work to be done	Hrs.
Identification and Study of different Spread Spectrum techniques	8
Project Title Identification	2
Testing of IP commands on command prompt	2
Design and Configure a network using CISCO packet tracer	6
Design and Configure a network using NS2 Simulator	6
Testing of Mini Project	2
Preparation of Report	4
Total Hours	30

NEERS

NOTE: Students must submit one project based on the syllabus at the semester end.

B.E. (Electronics Engineering)				B.	E. SEM: VI	Ι			
Course Name: Industrial Electronics				Course Code: PEC-ELE7013					
Teaching Scheme (Program Specific)					Examination	n scheme			
Mo	des of Teac	hing / Learni	ng / Weight	age	Mo	odes of C	Continuous Ass	sessment / E	valuation
Hours Per Week Theory (100)				Practical/ Oral (25)	Term Work (25)	Total			
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
-			Hours						150
03	-	02@	05	4	25	75	25	25	
IA : Internal Assessment - Paper Duration – 1.5Hour ESE : - Semester End Examination Paper Duration - 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance (20%)									
Prerequi	site: Basic E	lectrical and	Electronics	s Engineer	ing, E	lectrical	Networks		

Course Objectives: The course intends to deliver the role to study, understand and appreciate the concepts of Industrial Electronics.

Course Outcomes: Students will be able to:

SN	Course Outcome	RBT level
1	illustrate construction, working principles and applications of power electronic	L1, L2
	switches	
2	Identify rectifiers and inverters for dc and ac motor speed control	L1, L2, L3
3	Develop circuits using OPAMP and timer IC555	L1, L2, L3, L4
4	Identify digital circuits for industrial applications	L1, L2, L3
5	Illustrate the knowledge of basic functioning of microcontroller	L1, L2, L3, L4
6	Analyze speed-torque characteristics of electrical machines for speed control	L1, L2, L3, L4

Module	Topics	Hr	Cognitive levels of
No.		S	attainment as per
			Bloom's Taxonomy
	Semiconductor Devices: Review of Diodes: Rectifier Diode, Zener		
	Diode, Led, Photodiode		
1	Semiconductor Devices: Review of diodes rectifier diode, zener diode,		L1, L2
	LED, photodiode SCR V-I characteristics , R,R-C,UJT triggering	7	
	circuits, turning-off of a SCR (preliminary discussion), basics of Gate	,	
	Turn Off (GTO) Structure and V-I characteristics of Triac (modes of		
	operation not needed) and Diac, Applications of Triac-Diac circuit,		
	Characteristics and principle of Power BJT, power MOSFET, IGBT,		
	comparison of devices		
	Phase Controlled Rectifiers and Bridge Inverters		
	Full wave controlled rectifier using SCR's(semi controlled, fully		
2	controlled) with R load only. Derivation of output voltage, Concept of		L1, L2, L3
	RL and R-L-E load,		
	Block diagram of closed loop speed control of DC motors, Necessity of		
	inner current control loop, current sensing	7	
	Basic principle of single phase and three phase bridge inverters, block		
	diagrams including rectifier and inverter for speed control of AC		
	motors(frequency control only)		
		0	
	Operational Amplifiers and 555 Timer	8	

	TCET DEPARTMENT OF ELECTRONICS ENGINEERING (E Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2 Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 201) Under TCET-Autonomy Scheme - 2019	2019) 9)) teet. Etd. in 2001
3	Operational amplifier circuits, Ideal OPAMP behavior, common OPAMP ICs, Basic OPAMP circuits- Inverting amplifier, Noninverting amplifier, Voltage follower (Buffer), Instrumentation Amplifier, Summing amplifier, Schmitt triggers		L1, L2, L3, L4
	Active first order filter: Low pass and high pass filter Power Op Amps, Optical Isolation amplifier 555 timer-Operating modes: monostable, astable multivibrator		
4	Digital Logic and Logic Families Digital signals, combinational and sequential logic circuits, clock signals, Boolean algebra and logic gates Integrated circuits and logic families : Logic Levels, Noise Immunity, Fan Out, Power Dissipation, Propagation Delay, TTL logic family : TTL Designations, TTL Versions, Output Configuration, TTL characteristic, The CMOS family,, comparison with TTL family Flip flops: Set Reset(SR), Trigger(T), clocked D F/Fs; Buffer and drivers Registers, decoders and encoders, Multiplexer and Demultiplexer	8	L1, L2, L3
5	Microprocessor and Microcontrollers Overview of generic microprocessor, architecture and functional block diagram, Comparison of microprocessor and microcontroller, MSP430 Functional block diagram and architecture, assembly language programming, C compiler programming, basics of interfacing with external input / output devices (like reading external analog voltages, digital input output)	7	L1, L2, L3, L4
6	Motors Review and comparison of Torque–speed characteristics of DC motors and AC induction motors. Basic principles of speed control of AC/DC motors Basics of BLDC motor, Linear Actuator motor, Servo Motor Suitability of each motor for various industrial applications, Selection and sizing of motors for different applications. Applications for pumps, conveyors, machine tools etc	8	L1, L2, L3, L4
	Total Hours	45	

9

Books and References:

Sr.	Title	Authors	Publisher	Edition	Year
No.					
1	Power Electronics	M.H. Rashid	Prentice-Hall	-	-
			of India		
2	Fundamentals of	P S Bhimbra	Khanna	-	-
	Power Electronics		Publisher		
3	Power Electronics	Ned Mohan, Undeland,	John Wiley	-	-
		Robbins	Publication		
4	Electronic Devices and Circuits	Robert Boylestad and	Prentice-Hall	-	-
		Louis Nashelsky			
5	Industrial Electronics and	S K Bhattacharya, S		-	-
	Control by	Chatterjee			
6	Modern Digitals Electronic	Jain R P	Tata McGraw	-	-
			Hill		
7	Digital principal and Application	Malvino and Leach	Tata McGraw	-	
			Hill		
8	Microcontrollers and Embedded	Ramesh Gaonkar	PENRAM		
	System				

9	MSP430 Microcontroller Basics	John H. Davies	Newnes	1st	2008
				edition	

Online References:

Sr. No.	URL	Modules
		Covered
1.	https://www.nptel.com/	M1,M2,
		M3,M4,M5,M6
2.	https://www.electronics-notes.com/articles/analogue_circuits/operational-	M3
	amplifier-op-amp/inverting-amplifier.php	
3.	https://www.electronics-tutorials.ws/combination/comb_1.html	M4

Suggested List of Practical/ Experiments:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive Level s as per Blooms Taxonomy
1		To plot Characteristics of DIAC	2	L1, L2
2	Basic Experiments	To plot Characteristics of SCR, TRIAC	2	L1,L2,L3
3		To implement various Firing circuits for SCR	2	L1,L2,L3
4		To vary the output voltage of Full bridge rectifier by varing firing angle.	2	L1, L2
5		Verify and compare the propagation delays of TTL / CMOS gates	2	L1,L2,L3
6		Implement logic equations using Multiplexer (IC 74151)	2	L1,L2,L3
7	Design Experiments	Design firing circuit for half wave controlled rectifier.	2	L1,L2,L3
8		Design Ring and/or twisted ring counter using flip flops	2	L1,L2,L3

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

9	Advanced Experiments	Speed control of DC Motor Buck converter, Boost converter and Buck-Boost converter.	2	L1,L2,L3
10		Design of sequence generator using flip flops.	2	L1,L2,L3
11	Mini/Minor Projects/ Seminar/	1. Thyristor Power Control by IR Remote	6	L1,L2,L3,L4,L5,L6
12		 Lamp Life Extender by ZVS (Zero Voltage Switching) Three Phase Solid State 		
13		 Relay with ZVS 4. RFID based Attendance System 5. Computer Simulation Code 		
14		Minimization Method		
15	Case study	1Dual Converter Using Thyristors 2Remote AC Power Control by Android Application with LCD Display	4	L1,L2,L3

B.E. (Electronics Engineering)					SEM: VII				
Course Name: Computer Networking & Communication				Course Code: PEC-ELE7014					
Teaching Scheme (Program Specific)						Examination so	cheme		
Modes of	f Teaching	/ Learning /	/ Weightag	e	l	Modes of (Continuous Asses	sment / Evalu	ation
Hours Per Week				Theo	ry (100)	Practical/Oral	Term	Total	
							(25)	Work (25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
3	-	2@	5	4	25	75	25	25	
		I	A: Internal	Assessment	- Paper	r Duration	– 1.5 Hours		
		ESE	End Seme	ster Examin	nation -	Paper Dur	ation - 3 Hours		
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion									
of practical (40%) and Attendance (20%)									
Prerequi	site: PCC-I	ELE404: Prin	nciples of E	lectronic C	ommun	ication Sys	stems		

Course Objective: To impart the knowledge for understanding various networking concepts and analyze various layers & protocols.

Course Outcomes: Students will be able to:

SN	Course Outcomes	Cognitive Levels as per Blooms Taxonomy
1	Understand and explain Networking Concepts and protocols	L1, L2
2	Demonstrate understanding of networking concepts and required protocols	L1, L2, L3
3	Understand and explain Data link layer services and protocols.	L1, L2, L3
4	Understand and explain Networking layer services and protocols, and evaluate different addressing schemes and routing protocols	L1, L2, L3, L4, L5
5	Understand and explain Transport layer & Application layer services and protocols.	L1, L2, L3, L4
6	Understand and explain LAN's & connecting devices.	L1, L2, L3

Module	Topics	Hrs.	Cognitive Levels
No.			as per Blooms
			Taxonomy
1	Introduction to Network Architectures, Protocol Layers, and Service		
	models.		
	Uses of computer networks: Topologies, LAN, MAN, WAN, Network		
	topologies. Addressing: Physical / Logical /Port addressing, Protocols and	05	L1, L2
	Standards. Protocol Architecture: Need of layered protocol architecture, Layers		
	details of OSI. TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP		
2	Physical Layer		
	Transmission Media: Guided media like Coaxial, fiber, twisted pair, and		
	Wireless media, Transmission Impairments. Interconnecting Devices: Hub,		
	Bridges, Switches, Router, Gateway. Data communication model: DTE, DCE,	08	L1, L2, L3
	RS-232D Interface. Multiplexing: FDM, Synchronous TDM, ADSL, xDSL,		
	Cable Modem		
3	Data Link Control		
	Data link services: Framing, Flow control, Error control, ARQ methods,		
	Piggybacking. High Level Data Link Control (HDLC): HDLC configurations,	08	111213
	Frame formats, Typical frame exchanges. Medium Access Control Protocols:	00	E_1, E_2, E_3
	ALOHA, Slotted ALOHA, CSMA, CSMA/CD		
4	Network Layer		
	Switching: Switched Communication networks, Circuit switching Networks,		
	Circuit switching Concepts, Packet switching Principles: Virtual circuit		
	switching and Datagram switching. Routing in Packet Switching Networks:		11121314
	Characteristics, Routing strategies, Link state Routing versus Distance vector	14	L1, L2, L3, L4,
	Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford		LJ
	Algorithm. Internet Protocol: Principles of Internetworking: Requirements,		
	Connectionless Operation, Internet Protocol Operation: IP packet, IP addressing,		
	subnet addressing, IPv4, ICMP, ARP, RARP IPv6 (IPv6 Datagram format,		
	comparison with IPv4, and transition from IPv4 to IPv6)		
5	Transport Layer & Application Layer		
	Connection–oriented Transport Protocol Mechanisms: Transmission Control	06	
	Protocol (TCP): TCP Services, TCP Header format. User datagram Protocol		L1, L2, L3, L4
	(UDP) Congestion: Effects of congestion, Congestion control methods, Traffic		
	management, Congestion control in Packet switching Networks. Application		
	layer Protocols: HTTP, FTP, DNS, SMTP, SSH.		
6	Overview of network analysis and design process		
	Network design issues, requirement analysis (user application device network		
	other) concepts. Routing and forwarding, resource allocation, general principles	04	L1, L2, L3
	of network design, network characteristics, performance metric		

Books and References:

S. No.	Title	Authors	Publisher	Edition	Year
1	Computer Networks	S. Tanenbaum	Pearson Education	4th Edition	2002
2	Computer Networks	J. F. Kurose and K. W. Ross	Addison Wesley	5th edition	2012
3	Communication Networks	Alberto Leon Garcia	McGraw Hill Education	2nd edition	2003
4	Data and Computer communications	William Stallings	Pearson Education	10th edition	2013
5	Telecommunications Network Design Algorithms	Aaron Kershenbaum	McGraw Hill education (India) Edition	ISBN: 10: 0070342288, Edition 2014	2014

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.courseera.org	https://www.coursera.org/learn/networking	M1, M2, M3
		for beginners	
2	www.udemy.com	https://www.udemy.com/networking concepts	M1, M2, M3, M4
3	https://nptel.ac.in	https://nptel.ac.in/courses/106105193/	M4, M5
4	http://www.cisco.in	http://www.ciscoh.in/courses/networking/rou	M5, M6
		ter configuration	

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.
Identification and Study of Networking Models	8
Project Title Identification	2
Testing of IP commands on command prompt	2
Design and Configure a network using CISCO packet tracer	6
Design and Configure a network using NS2 Simulator	6
Testing of Mini Project	2
Preparation of Report	4
Total Hours	30

NOTE: Students must submit one project based on the syllabus at the semester end.

B.E. (Electronics Engineering)				B.E. SEM: VII					
Course Name: Multimedia System Design				Course Code: PEC-ELE7015					
Teaching Scheme (Program Specific)						Examinatio	n scheme		
Mod	les of Teacl	hing / Learn	ing / Weig	htage	Me	odes of Co	ontinuous As	sessment / Eva	aluation
Hours Per Week				Theo	ry (100)	Practical/	Term	Total	
						-	Oral (25)	Work (25)	
Theor	Tutoria	Practica	Contac	Credits	IA	ESE	OR	TW	
У	l	l	t Hours						150
03	-	02@	05	4	25	75	25	25	
		IA:	Internal A	ssessment -	Paper I	Duration -	- 1.5Hour		
		ESE: -	Semester E	nd Examina	ation Pa	per Durat	ion - 3 Hours	5	
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
completion of practical (40%) and Attendance (20%)									
Prerequi	isite: Comp	uter Graphic	s	•`	,				

Course Objective: The course intends provide a knowledge about multimedia system design components and understand compression and decompression techniques and different image formats.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Understand multimedia architecture and its latest applications	L1, L2
2	Understand various multimedia input and output devices	L1, L2
3	Understand various audio and video file formats	L1, L2
4	Apply various compression and decompression techniques for different	L1, L2, L3
	formats for image, audio and video	
5	Understand various retrieval techniques for audio and video	L1, L2
6	Apply planning and development cycle for multimedia projects	L1, L2, L3

Module	Topics	Hr	Cognitive levels of
No.		S	attainment as per
			Bloom's Taxonomy
	Fundamentals of Multimedia Systems Design		
	An Introduction Multimedia Systems, Design Fundamentals, Elements		
1	graphics display IMA Architectural Framework Network architecture	6	L1, L2
	for multimedia systems, Defining objects for Multimedia systems: Text,	Ū	,
	Images, Audio and video		
	Multimedia Input and Output Technologies		
	Key Technology Issues, Touch screen, Pen Input, Video and Image		
2	Display Systems, Print Output Technologies, Image Scanners, Digital	09	L1, L2, L3
	Voice and Audio, Video Images and Animation, Full Motion Video		
	Multimedia File format and standards		
3	RTF, TIFF, RIFF, MIDI, JPEG DIB, AVI, MIDI audio, JPEG & MPEG	09	
	standards, MIDI Vs Digital Audio, Analog display standards, Digital	07	L1, L2, L3, L4
	display standards, Digital video		
	Compression and Decompression Techniques		
4	Introduction to coding and compression techniques- Lossy and Lossless,		
4	Entropy encoding, Run length encoding, Huffman coding, JPEG	10	L1, L2, L3
	compression process, Discrete Cosine Transform, Video compression-	10	
	MPEG-1, MPEG2, MPEG-4, Audio Compression-MPEG, Adaptive		
	differential pulse code modulation		
	Storage and retrieval technologies		L1, L2, L3

TCET Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019 Ice

5	Magnetic Media Technology, RAID-Level-0 To 5, Optical Media, WORM optical drives	5	
6	Planning and costing Idea Analysis, Pretesting, Task Planning, Prototype Development, Alpha Development, Beta Development, Delivery, Scheduling, Estimating	5	L1, L2, L3, L4
	Total Hours	45	

Books and References:

Sr.	Title	Authors	Publisher	Edition	Year
No.					
1	Multimedia Systems Design	Prabhat K. Andleigh, Kiran	Pearson	First	2015
	Paperback	Thakrar	Education		
			India		
2	Multimedia: Making it Work	TayVaguhan	McGraw Hill	Seventh	2008
			Professional	Edition	
3	Fundamentals of Multimedia	Li and Ze – Nian Mark's	PHI	First	2005
		Drew			

Online References:

Sr. No.	Website Name	URL	Modules Covered
01	NPTEL	https://nptel.ac.in/courses/117/105/117105083/	M1 to M6

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.
Identification and Study of multimedia system architecture	8
Project Title Identification	2
Identification of Multimedia input and output technologies	2
Design of the project	6
Design of the project	6
Testing of Mini Project	2
Preparation of Report	4
Total Hours	30

NOTE: Students must submit one project based on the syllabus at the semester end.

B.E. (Electronics Engineering)						B.I	E. SEM: VII		
	Course Na	ame: Analog	and Mixed	VLSI Desi	gn		Course Co	de: PCC-ELE	27021
,	Teaching Sc	heme (Progr	am Specific				Examination	scheme	
Mo	des of Teac	hing / Learni	ng / Weight	tage	Mod	es of Co	ontinuous Asse	essment / Eval	uation
	Н	ours Per We	ek		The	eory	Practical/	Term	Total
				(1	00)	Oral (25)	Work (25)		
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
03	-	02@	05	4	25	75	25	25	
		IA : In	nternal Asses	ssment - Paj	per Dur	ation – 1	.5Hour		
		ESE : - Se	mester End	Examinatio	n Paper	Duratio	n - 3 Hours		
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
	completion of practical (40%) and Attendance (20%)								
Prerequi	site: Analog	Electronics I,	Analog Ele	ctronics II,	Digital	Circuit	Design, IC and	Applications	

Course Objectives: The course will introduce students to various mixed circuit's building block and its design techniques. It will also summarize upon issues related to CMOS analog VLSI circuit design and mixed layout design.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Demonstrate an understanding of analyze building blocks of CMOS	L1,L2,L3,L4,L5
	analog VLSI circuits.	
2	Design basic building blocks of CMOS analog VLSI circuits.	L1,L2,L3,L4
3	Understand and discuss tradeoffs involved in analog VLSI Circuits.	L1,L2,L3
4	Understand the use of tools to carry out verifications of issues involved in	L1,L2,L3

Module	Topics	Hrs	RBT Levels
No.			
1	Analog building blocks		
	Need for CMOS analog and mixed signal designs, MOS Transistor as		
	sampling switch, active resistances, current source and sinks, current mirror.	_	L1.L2.L3
	Voltage References: Band Gap References, General Considerations, Supply-	7	,,
	independent biasing, Temperature independent references,		
2	Amplifier Fundamentals		
	Single Stage Amplifiers: Basic concepts, Gain Bandwidth (GBW), Common-		
	source stage (with resistive load, diode connected load, current source load,	8	
	triode load, source degeneration), source follower, common gate stage.		L1,L2,L3,L4,
	Differential Amplifiers: Single ended and differential operation, Basic		L5
	differential pair, Common-mode response, Differential pair with MOS		
	IOaus		
		-	
	MOS Operational Amplifiers	10	
	Stability and Frequency Compensation: General Considerations, Multipole		
	systems, Phase margin, Frequency compensation, compensation of two stage		11121314
	op- amps		L1,L2,L3,L4, L5
3	Op-amp Design: General Considerations, performance parameters, One-		20
	stage op- amps, Two-stage op-amps, Gain Boosting, Common-mode		
	reedback, input range limitations(ICMIK), in op-amps. Design of single ended		
I	and double ended two stage Op-amps	l	

TCET	-
DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2 rd Cycle Accreditation w.e.f. 1 st July 2019)	te
Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019)	Estd. in

-			
4	Mixed Signal Circuits	7	L1,L2,L3
	Basic Concepts: AMS design flow, ASIC, Full custom design,		
	Semicustom design, System on Chip, System in package, Hardware		
	software co-design, and mixed signal layout issues.		
	Oscillators: General considerations, Ring oscillators, LC oscillators ,VCO		
	Phase-Locked Loop: Simple PLL, Charge pump PLL, Non-ideal effects in		
	PLL, Delay locked loops and applications of PLL in integrated circuits		
5	Data Converter Fundamentals	7	L1,L2
	Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,		
	Precision Considerations, Charge injection cancellation, Unity gain buffer,		
	Non- inverting amplifier and integrator. Basic CMOS comparator Design		
	Fundamentals: Analog versus discrete time signals, converting analog signals		
	to data signals, sample and hold characteristics. DAC specifications, ADC		
	specifications, DAC architectures and ADC architectures		
6	Layout Techniques	6	L1,L2
	ASIC design flow ,Basic of analog layout techniques, different concept like		
	floor planning, shielding		

Books and References:

SR.	Title	Authors	Publisher	Edition	Year
No.					
1	Design of Analog CMOS	D Dogovi	Tata McGraw Hill	Einst	2000
1	Integrated Circuits	D Kazavi		riist	2000
2	CMOS Circuit Design,	R. Jacaob Baker, Harry	Wiley	Student	1007
2	Layout, and Simulation	W. Li, David E. Boyce		Student	1997
2	CMOS Analog Circuit Design	P. E. Allen and D. R.	Oxford University	Third	2010
5		Holberg,	Press		2010
4	Analysis and design of Analog	Gray, Meyer, Lewis,	Wiley	Fifth	2008
4	Integrated Circuits	Hurst		1.1111	2008

Online References:

SR.	Website Name	URL	Modules
No.			Covered
1	https://accessengineeringlibrary.	https://www.accessengineeringlibrary.com/conte	M1,M2,M3,M4
	com/	nt/book/9780071826631	,M5,M6
2	https://accessengineeringlibrary.	https://www.accessengineeringlibrary.com/conte	M1,M2,M3,M4
	com/	nt/book/9781260441451	,M5,M6
3	https://nanohub.org/	https://nanohub.org/resources/	M1,M2,M3,M4
4	https://nptel.ac.in	https://nptel.ac.in/courses/117107094/	M1,M2,M3,M5
5	https://nptel.ac.in	http://www.nptelvideos.in/2012/11/analog-	M1,M2,M3,M4
		ics.html	,M5,M6

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.
To design Common Gate amplifier and analyze its frequency response	2hr/week
To design Common Source amplifier and analyze its frequency response.	2hr/week
To design Source Follower and analyze its frequency response	2hr/week
To design two stage operational amplifier for given specifications	2hr/week

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

To design Common Gate amplifier and analyze its frequency response	2hr/week
To analyze Differential amplifier with passive load and its frequency response	2hr/week
To analyze Differential amplifier with active load and its frequency response	2hr/week
R-2R ladder networks	2hr/week
Current steering	2hr/week
Cyclic DAC	2hr/week
Flash	2hr/week
Integrating ADCs	2hr/week
Successive approximation ADCs	2hr/week
Total Hours	30

NOTE: Students must submit one project based on the syllabus at the semester end.

Image: Contract of the second seco

B.E. (Electronics Engineering)						B.E. SEM:VII			
Course Name: Internet Programming					Course Code: PEC-ELE7022				
Т	eaching Scl	neme (Prog	ram Specif	ic)			Examination s	cheme	
Mod	es of Teach	ing / Learn	ing / Weig	htage	Mo	odes of	Continuous Asses	sment / Eva	luation
	He	ours Per We	ek		The	eory	Practical/Ora	Term	Total
					(1	00)	l (25)	Work	
								(25)	
Theor	Tutoria	Practica	Contac	Credits	IA	ESE	OR	TW	
У	1	1	t Hours						150
03	-	02@	05	4	25	75	25	25	
		IA	Internal A	ssessment	- Paper	Duratio	n – 1.5Hour		
	ESE : - Semester End Examination Paper Duration - 3 Hours								
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
completion of practical (40%) and Attendance (20%)									
Prerequ	isite: Opera	ting System							

Course Objectives: To introduce students with mobile operating system and mobile development IDE"s. The course will explain the core concepts related to mobile application development.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Apply Java basics for creating websites and web pages	L1,L2,L3,L4
2	Build web page and web sites using basic HTML tags	L1,L2,L3,L4
3	build dynamic and responsive web sites using JavaScript	L1,L2,L3,L4
4	Develop server side programs using Servlets and JSP.	L1,L2,L3,L4
5	Construct web pages in PHP with database connectivity and to represent	L1,L2,L3,L4
	data in XML format.	
6	Build responsive, mobile-first websites using Bootstrap.	L1,L2,L3,L4

Modul	Topics	Hr	RBT levels
e No.		S	
1	JAVA PROGRAMMING.		L1, L2, L3, L4,
	An overview of JAVA – Syntax, Data Types, Variables and Arrays,	6	
	Operators, Control Statements etc ,JAVA Methods – method overloading,		
	scope, recursion JAVA classes - modifiers, encapsulation, Interface,		
	inheritance etc JAVA File handling - read, write , delete file Java		
	Examples		
2	WEBSITES BASICS - HTML		L1, L2, L3, L4
	Basics-RIA Rich Internet Applications - Collaborations tools -		
	Understanding websites and web servers: Understanding Internet -	6	
	Difference between websites and web server- Internet technologies		
	Overview –Understanding the difference between internet and intranet;		
	HTML and CSS: HTML 5.0, XHTML, CSS 3.		
3	CLIENT SIDE PROGRAMMING		L1, L2, L3, L4
	Java Script: An introduction to JavaScript-JavaScript DOM Model-Date	8	
	and Objects,-Regular Expressions- Exception Handling-Validation-Built-		
	in objects-Event Handling, DHTML with JavaScript- JSON introduction –		
	Syntax – Function Files – Http Request -SQL.		
4	SERVER SIDE PROGRAMMING	8	L1, L2, L3, L4
	Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GFT and		
	POST actions-Session Handling, Understanding Cookies, Installing and		
	Configuring Apache Tomcat Web Server		
	DATABASE CONNECTIVITY: JDBC perspectives, JDBC program		

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	example – JSP: Understanding Java Server Pages-JSP Standard Tag		
	Library (JSTL)-Creating HTML forms by embedding JSP code.		
5	PHP and XML	9	L1,L2,L3,L4
	An introduction to PHP: PHP- Using PHP- Variables- Program control-		
	Built-in functions-Connecting to Database – Using Cookies-Regular		
	Expressions; XML: Basic XML- Document Type Definition- XML		
	Schema DOM and Presenting XML, XML Parsers and Validation, XSL		
	and XSLT Transformation, News Feed (RSS and ATOM).		
6	INTRODUCTION BOOTSTRAP 3	8	L1,L2,L3,L4
	Bootstrap 3 basics - tables, images, alerts, buttons, progress bar, panels,		
	collapse, forms etc Bootstrap grids - vertical, horizontal, small, medium,		
	large		
	TOTAL	45	

Books and References:

SR. No.	Title	Authors	Publisher	Edition	Year
1	Internet and World Wide Web	Deitel and Deitel and	Prentice Hall	5th	2011
	- How to Program	Nieto		Edition.	
2	Web Technologies A	Jeffrey C and Jackson,	Pearson	-	2011
	Computer Science Perspective		Education		
3	Java-The Complete Reference	Herbert Schildt	Mc Graw Hill	English	2011
			Professional	Edition	
4	Core Java A Comprehensive	Mahesh P. Matha,	Prentice Hall of India	-	2011
	Study				
5	Web Programming – Building	Chris Bates	WileyPublications,	3rd	2009
	Intranet Applications.			Edition,	
6	Web Technology	Gopalan N.P. and	Prentice Hall of	-	2011
		Akilandeswari J.,	India,		

Online References:

SR. No.	Website Name	URL	Modules Covered
1	https://www.sensors.co.uk/	https://www.webtechnology.uk /	M1 to M6
2	www.udemy.com	https://www.udemy.com/course fwebtechnology	M1,M2,M3,M4

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.
Experiment on JAVA using Data Types – Variables and Arrays – Operators – Control	4
Statements - Classes - Objects - Methods - Inheritance - Packages	
Experiment on HTML - Collaborations tools - Understanding websites and web servers:	4
Understanding Internet	
Experiment on Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions-	4
Session Handling-	
Experiment on Using PHP- Variables- Program control- Built-in functions-Connecting to	4
Database –	
Experiment on Bootstrap - tables, images, alerts, buttons, progress bar, panels, collapse,	4
forms, grids etc	
Mini Project	6
Testing of project and Preparation of Report	4
Total Hours	30

NOTE: Students must submit one project based on the syllabus at the semester end.

B.E. (Electronics Engineering)					B.	E. SEM:VI	[
Course Name: Power Electronics and Drives				Course C	ode:PEC-E	LE7023			
,	Teaching Sc	heme (Progr	am Specific	:)			Examination	scheme	
Mo	des of Teacl	hing / Learni	ng / Weight	tage	Mo	odes of C	Continuous Ass	essment / E	valuation
	H	ours Per We	ek		T	heory	Practical/	Term	Total
			(100)	Oral (25)	Work			
								(25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
03	-	02@	05	4	25	75	25	25	
		IA: Ir	nternal Asses	ssment - Pa	per D	uration –	1.5Hour		
	ESE : - Semester End Examination Paper Duration - 3 Hours								
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
	completion of practical (40%) and Attendance (20%)								
Prerequi	site: Basic F	lectrical and	Electronic	s Engineer	ing, F	lectrical	Networks		

Course Objectives: To enhance the ideas of students for more complex power electronic system and to teach the analytical methods in power electronic systems exposing the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Understand working of power devices	
2	Thoroughly understand the modern methods of analysis and control of power	L1
	electronic systems.	
3	Carry out the theoretical analysis of the power electronic systems	L1, L2,L3
4	Understand power electronic converters.	L1, L2, L3
4	Simulate and analyze power electronic systems.	L1, L2, L3,L4
5	Understand Applications in power electronics AC and DC drives	L1, L2, L3,L4
6	Understand applications of power electronics systems.	L1, L2, L3,L4

Module	Topics	Hr	Cognitive levels of
No.		S	attainment as per
			Bloom's Taxonomy
	Single-phase Rectifiers		
	1.1 Introduction to Power Devices		
	1.2 Introduction to controlled rectifiers, Half wave controlled rectifiers		
1	with R, RL load, effect of free-wheeling diode, Full wave fully	7	L1, L2
	controlled rectifiers (centre-tapped, bridge configurations), full-	,	
	wave half controlled (semi-converters) with R, RL load, effect of		
	freewheeling diode.		
	1.3 Calculation of performance parameters		
	Single -phase inverters and control		
	2.1 Introduction to basic and improved series/parallel inverters.		
2	2.2 Introduction, principle of operation, performance parameters of		L1, L2, L3
	Single-phase half / full bridge voltage source inverters with R and R-L	7	
	load.	/	
	2.3 Voltage control of single-phase inverters using PWM techniques,		
	harmonic neutralization of inverters.		
	DC-DC Converters	8	

	TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019) (Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019) (Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019				
3	3.1 Basics of chopper circuits, basic buck, boost and buck-boost				
	converters.		L1, L2, L3, L4		
	3.2 Feedback control of converters (PI and PID).				
	Power Electronic Applications in DC Drives				
	4.1 Introduction to DC motors, speed control of DC motor, drives with				
4	semi converters, full converters and dual converters.	8	L1, L2, L3		
	4.2 Chopper-based drive.				
	4.3 BLDC control mechanism				
	Power Electronic Applications in AC Drives				
5	5.1 Introduction to three-phase induction motor, speed control methods				
	for three-phase induction motor				
	i) Stator voltage		11121314		
	ii) Variable frequency	7	L1, L2, L3, L4		
	iii) Rotor resistance				
	iv) V/f control				
	v) Slip power recovery schemes				
	Power Electronic Applications				
6	6.1 Application areas in electric vehicle and utilities for charging	8	L1, L2, L3, L4		
	electric vehicles.	0			
	6.2 Induction heating, Energy conversion in renewable energy system.				
	Total Hours	45			

Books and References:

SN	Title	Authors	Publisher	Editio	Year
				n	
1	Power Electronics	M. H. Rashid	Pearson	Third	2008
2	Power Electronics	Ned Mohan, Undeland, Robbins	John Wiley Publication	Second	2011
3	Power Electronics	P. S. Bhimbra	Khanna Publishers	Second	2012
4	Power Electronics	M.D. Singh and K. B. Khanchandani	Tata McGraw Hill	Second	2011
5	Fundamentals of Power Electronics	R. W. Erickson, D. Maksimovic	Springer	2nd Edition	

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.udemy.com	https://www.udemy.com/topic/electronics/	M4,M5, M6
2	https://nptel.ac.in	https://nptel.ac.in/courses	M1,M2,M3,M4,M5, M6
3	http://www.electrical4u.com	http://www.electrical4u.com/electric-machines/	M1,M2,M3

Suggested List of Practical/ Experiments:

Practica l	Type of Experiment	Practical/ Experiment Topic	Hrs •	Cognitive Level s as per Blooms
Number				Taxonomy
1		To study characteristics of power electronics devices.	2	L1, L2

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

0

tcet

2		To implement firing circuits of SCR.	2	L1,L2,L3
3		To vary the output voltage of Full bridge rectifier by varing firing angle.	2	
4	Basic Experiments	Simulation of single phase Half wave and Full wave rectifier circuit using Matlab for various firing angles. Basic Experiments		L1, L2, L3
5		To simulate single phase PWM inverter with various load conditions		L1, L2
6		To implement step down chopper for various control strategies of duty cycle.	2	L1,L2,L3
7		To simulate Induction motor with V/f control.	2	L1,L2,L3
8	Design Experiments	To construct three phase fed closed loop chopper drive circuit and to control the speed of the separately-excited dc motor	2	L1,L2,L3
9	Advanced Experiments	Study of electric vehicles infrastructure battery charging phenomenon	2	L1,L2,L3,L4
10		To develop model for electric vehicle battery charging station	2	L1,L2,L3
11	Mini/Minor Projects/ Seminar/	 Thyristor Power Control by IR Remote Lamp Life Extender by ZVS (Zero Voltage 	6	L1,L2,L3,L4,L5,L6
12		Switching) 3. Three Phase Solid State Relay with ZVS		
13		4. Industrial Battery Charger by Thyristor Firing Angle Control		
14		 5. Precise Illumination Control of Lamp 6. Sine Pulse Width Modulation (SPWM) 		
15	Case study	 Power Electronics Converters for Wind Turbine Systems Remote AC Power Control by Android Application with LCD Display 	4	L1,L2,L3

B.E. (Electronics Engineering)				B.	E. SEM:VI	[
Course Name: Power Electronics and Drives				Course C	Course Code:PEC-ELE7023				
,	Teaching Sc	heme (Progr	am Specific	:)			Examination	scheme	
Mo	des of Teacl	hing / Learni	ng / Weight	tage	Mo	odes of C	Continuous Ass	essment / E	valuation
	H	ours Per We	ek		T	heory	Practical/	Term	Total
					(100)	Oral (25)	Work	
								(25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
03	-	02@	05	4	25	75	25	25	
		IA: Ir	nternal Asses	ssment - Pa	per D	uration –	1.5Hour		
ESE : - Semester End Examination Paper Duration - 3 Hours									
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%). Timely									
completion of practical (40%) and Attendance (20%)									
Prerequi	site: Basic F	lectrical and	Electronic	s Engineer	ing, F	lectrical	Networks		

Course Objectives: To enhance the ideas of students for more complex power electronic system and to teach the analytical methods in power electronic systems exposing the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Understand working of power devices	
2	Thoroughly understand the modern methods of analysis and control of power	L1
	electronic systems.	
3	Carry out the theoretical analysis of the power electronic systems	L1, L2,L3
4	Understand power electronic converters.	L1, L2, L3
4	Simulate and analyze power electronic systems.	L1, L2, L3,L4
5	Understand Applications in power electronics AC and DC drives	L1, L2, L3,L4
6	Understand applications of power electronics systems.	L1, L2, L3,L4

Module	Topics	Hr	Cognitive levels of
No.		S	attainment as per
			Bloom's Taxonomy
	Single-phase Rectifiers		
	1.1 Introduction to Power Devices		
	1.2 Introduction to controlled rectifiers, Half wave controlled rectifiers		
1	with R, RL load, effect of free-wheeling diode, Full wave fully	7	L1, L2
	controlled rectifiers (centre-tapped, bridge configurations), full-	,	
	wave half controlled (semi-converters) with R, RL load, effect of		
	freewheeling diode.		
	1.3 Calculation of performance parameters		
	Single -phase inverters and control		
	2.1 Introduction to basic and improved series/parallel inverters.		
2	2.2 Introduction, principle of operation, performance parameters of		L1, L2, L3
	Single-phase half / full bridge voltage source inverters with R and R-L	7	
	load.	/	
	2.3 Voltage control of single-phase inverters using PWM techniques,		
	harmonic neutralization of inverters.		
	DC-DC Converters	8	

	TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019) (Accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019) (Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019				
3	3.1 Basics of chopper circuits, basic buck, boost and buck-boost				
	converters.		L1, L2, L3, L4		
	3.2 Feedback control of converters (PI and PID).				
	Power Electronic Applications in DC Drives				
	4.1 Introduction to DC motors, speed control of DC motor, drives with				
4	semi converters, full converters and dual converters.	8	L1, L2, L3		
	4.2 Chopper-based drive.				
	4.3 BLDC control mechanism				
	Power Electronic Applications in AC Drives				
5	5.1 Introduction to three-phase induction motor, speed control methods				
	for three-phase induction motor				
	i) Stator voltage		11121314		
	ii) Variable frequency	7	L1, L2, L3, L4		
	iii) Rotor resistance				
	iv) V/f control				
	v) Slip power recovery schemes				
	Power Electronic Applications				
6	6.1 Application areas in electric vehicle and utilities for charging	8	L1, L2, L3, L4		
	electric vehicles.	0			
	6.2 Induction heating, Energy conversion in renewable energy system.				
	Total Hours	45			

Books and References:

SN	Title	Authors	Publisher	Editio	Year
				n	
1	Power Electronics	M. H. Rashid	Pearson	Third	2008
2	Power Electronics	Ned Mohan, Undeland, Robbins	John Wiley Publication	Second	2011
3	Power Electronics	P. S. Bhimbra	Khanna Publishers	Second	2012
4	Power Electronics	M.D. Singh and K. B. Khanchandani	Tata McGraw Hill	Second	2011
5	Fundamentals of Power Electronics	R. W. Erickson, D. Maksimovic	Springer	2nd Edition	

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.udemy.com	https://www.udemy.com/topic/electronics/	M4,M5, M6
2	https://nptel.ac.in	https://nptel.ac.in/courses	M1,M2,M3,M4,M5, M6
3	http://www.electrical4u.com	http://www.electrical4u.com/electric-machines/	M1,M2,M3

Suggested List of Practical/ Experiments:

Practica l	Type of Experiment	Practical/ Experiment Topic	Hrs •	Cognitive Level s as per Blooms
Number				Taxonomy
1		To study characteristics of power electronics devices.	2	L1, L2

TCET

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

0

tcet

2		To implement firing circuits of SCR.	2	L1,L2,L3
3		To vary the output voltage of Full bridge rectifier by varing firing angle.	2	
4	Basic Experiments	Simulation of single phase Half wave and Full wave rectifier circuit using Matlab for various firing angles.	2	L1, L2, L3
5		To simulate single phase PWM inverter with various load conditions	2	L1, L2
6		To implement step down chopper for various control strategies of duty cycle.	2	L1,L2,L3
7		To simulate Induction motor with V/f control.	2	L1,L2,L3
8	Design Experiments	To construct three phase fed closed loop chopper drive circuit and to control the speed of the separately-excited dc motor	2	L1,L2,L3
9	Advanced Experiments	Study of electric vehicles infrastructure battery charging phenomenon	2	L1,L2,L3,L4
10		To develop model for electric vehicle battery charging station	2	L1,L2,L3
11	Mini/Minor Projects/ Seminar/	 Thyristor Power Control by IR Remote Lamp Life Extender by ZVS (Zero Voltage 	6	L1,L2,L3,L4,L5,L6
12		Switching) 3. Three Phase Solid State Relay with ZVS		
13		4. Industrial Battery Charger by Thyristor Firing Angle Control		
14		 5. Precise Illumination Control of Lamp 6. Sine Pulse Width Modulation (SPWM) 		
15	Case study	 Power Electronics Converters for Wind Turbine Systems Remote AC Power Control by Android Application with LCD Display 	4	L1,L2,L3

B.E. Semester –VII									
B.E. (Electronics Engineering) B.E. SEM: VII									
Course Name: Digital Signal Processing Course Code: PEC-ELE7024								E7024	
Tea	ching Schen	ne (Program	Specific)			Exa	mination sch	ieme	
Modes	of Teaching	g / Learning /	Weightage	N	lodes of	f Contir	uous Assessi	nent / Evaluat	tion
	Н	ours Per Wee	k		The	eory	Practical/	Term	Total
					(1	00)	Oral (25)	Work (25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
3	-	2@	5	4	25	75	25	25	
IA: Internal Assessment - Paper Duration – 1.5 Hour ESE: - End Semester Examination Paper Duration - 3 Hours									
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely									
	_	comple	tion of pract	ical (40%)	and Atte	endance	(20%)		
Prerequis	ite: Signals a	and Systems, I	IC and Appli	cations					

Course Objective: To Impart the design and performance analysis techniques of digital filters. The course will also introduce the students to advanced signal processing techniques, digital signal and their applications.

Course Outcomes: Students will be able to:

SN	Course Outcomes	Cognitive Levels as
		per Bloom's
		Taxonomy
1	Demonstrate an understanding of the discrete-time Fourier transform and the	L1, L2, L3
	concept of digital frequency.	
2	Design FIR and IIR digital filters to meet arbitrary specifications and	L1, L2, L3, L4
	Develop algorithms for implementation	
3	Understand the effect of hardware limitations on performance of digital filters	L1, L2
4	Understand the fundamentals of digital image representation and simple pixel	L1, L2, L3, L4
	relations and apply various image transforms techniques to different digital	
	images.	
5	Understand the use of advanced signal processing techniques, digital signal	L1, L2
	processors and digital image processing in various applications	

Module	Topics	Hr	Cognitive
No.		s.	Levels as per
			Bloom's
			Taxonomy
	Discrete Fourier Transform and Fast Fourier Transform		
	Definition and Properties of DFT, IDFT, circular convolution of sequences		
	using DFT and IDFT, Relation between Z-transform and DFT Filtering of		
1	long data sequences, Method Computation of DFT, Fast Fourier transforms	09	L1, L2, L3
	(FFT). Radix-2decimationintime and decimation in frequency FFT		
	algorithms inverse FFT		
	IIR Digital Filters		
2	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band stop and All		
	Pass) Analog filter approximations: Butterworth, Chebyshev I and II,	0.0	
	Mapping of S-plane to Z-plane, impulse invariance method, bilinear	08	L1, L2, L3
	transformation method, Design of IIR digital filters from analog filters with		
	examples,		

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

3	FIR Digital Filters Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters Frequency response, location of the zeros of linear phase FIR filters, Design of FIR filters using window techniques (Rectangular, Hamming, Hanning, Blackmann, Barlet) Comparison of IIR and FIR filters	06	L1, L2, L3, L4
4	Finite Word Length Effects in Digital Filters and Multirate DSP Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Co-efficient quantization error, Zero input limit cycle oscillations, Overflow limit cycle oscillations, Scaling, Quantization in Floating Point realization of IIR digital filters Finite word length effects in FIR digital filters Introduction and concept of Multirate Processing, Block Diagram of Decimator and Interpolator, Decimation and Interpolation by Integer numbers Multistage Approach to Sampling rate converters, Sample rate conversion using Polyphase filter structure	06	L1, L2, L3
5	Basics of Image Processing & Image TransformsDigital Image Fundamentals: Elements of Visual Perception, A SimpleImage Model, Two-dimensional Sampling and Quantization, Tonal andSpatial Resolutions, Some Basic Relationships between Pixels, Image FileFormats: BMP, TIFF and JPEG. Color Models (RGB, HSI, YUV)Image Transforms:Introduction to 2-Dimensional Fourier Transform, Discrete FourierTransform, Properties of the Two-Dimensional Fourier Transform, FastFourier Transform (FFT), Computation of 2 DFFT 5.2 Discrete HadamardTransform (DHT), Fast Hadamard Transform (FHT), Discrete CosineTransform (DCT), Introduction to Discrete Wavelet Transform (DWT)Enhancement in the frequency domain:Frequency Domain FilteringLowpass Filtering, High-pass Filtering, Homomorphic Filtering, Generationof Spatial Masks from Frequency Domain Specifications	08	L1, L2, L3, L4
6	DSP & DIP Applications Applications of DSP: Radar Signal Processing and Speech Processing, Applications of DIP: Case Study on Digital Watermarking, Biometric Authentication (Face, Fingerprint, Signature Recognition), Vehicle Number Plate Detection and Recognition, Object Detection using Correlation Principle, Person Tracking using DWT, Handwritten and Printed Character Recognition, Contend Based Image Retrieval, Text Compression	08	L1, L2

Books and References:

SR	Title	Authors	Publisher	Edition	Year
No					
1	Digital Signal Processing, A Practical Approach	Emmanuel C. Ifeachor, Barrie W. Jervis	Pearson Education	2nd Edition	2011
2	Digital Signal Processing	Tarun Kumar Rawat	Oxford University Press	2nd Edition	2015
3	Digital Signal Processing	Proakis J., Manolakis D	Pearson Education	4th Edition	2010
4	Digital Signal Processing – A Computer Based Approach	Sanjit K. Mitra	McGraw Hill Education	4th Edition	2012

TCET DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

			(India) Private Limited		
5	Discrete Time Signal Processing	Oppenheim A., Schafer R., Buck J.	Pearson Education	2nd Edition	2010
6	Digital Signal Processors, Architecture, Programming and Applications	B. Venkata Ramaniand, M. Bhaskar	Tata McGraw Hill	3 rd Edition	2004
7	Theory and Applications of Digital Signal Processing	L. R. Rabinerand B. Gold	Prentice-Hall of India	4 th Edition	2006
8	Digital Signals Processing	A. Nagoor Kani	Tata McGraw- Hill Education	2 nd Edition	2017
9	Digital Image Processing	Rafel C. Gonzalez and Richard E. Woods	Pearson Education, Asia	3 rd edition	2009
10	Fundamentals and Digital Image Processing	Anil K. Jain	Prentice Hall of India Private Ltd	3 rd edition	2009
11	Digital Image Processing	S. Jayaraman, E. Esakkirajan and T. Veerkumar	TataMcGraw Hill Education Private Ltd.	1 st edition	2009
12	Digital Image Processing	William K. Pratt	John Wiley & Sons, Inc.	3 rd edition	2001

Online References:

SR. No.	Website Name	URL	Modules Covered
1	https://nptel.ac.in	https://nptel.ac.in/courses/117102060/	M1, M2, M3
2	https://swayam.gov.in	https://swayam.gov.in/nd1_noc19_ee50/preview	M1, M2, M3, M4
3	http://www.ti.com	http://www.ti.com/processors/digital-signal- processors/overview.html	M5, M6
4	https://www.analog.com	https://www.analog.com/en/design- center/landing-pages/001/beginners-guide-to- dsp.html	M4, M5, M6
5	https://www.nxp.com	https://www.nxp.com/products/processors-and- microcontrollers/additional-processors-and- mcus/digital-signal-processors:Digital-Signal- Processors	M6
6	https://www.classcentral.c om/	https://www.classcentral.com/course/coursera- digital-signal-processing-423	M1, M2, M3, M4, M5
7	www. university of tartu.org	https://sisu.ut.ee/imageprocessing/book/1	M1, M2, M3
8	www.courseera.org	https://www.coursera.org/learn/computervision- imageprocessing	M1, M2, M3, M4
9	www.udemy.com	https://www.udemy.com/course/image- processing-and-computer-vision-with-python- opencv/	M2, M3, M4
10	https://nptel.ac.in	https://nptel.ac.in/courses/117105079/	M1, M2, M3, M4, M5, M6

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.					
Design & implementation of Low Pass Butterworth filter.						
Design & implementation of IIR Butterworth LPF using IIMT method.	2hr/week					
Design & implementation of IIR Butterworth LPF using BLT method	2hr/week					
Design FIR using windowing method	2hr/week					
Design decimation & interpolation for defined factor.	2hr/week					
To Compare performance of various windowing method for FIR filter	2hr/week					
To Compute FFT and compare performance of DFT and FFT	2hr/week					
Surveillance Checking with Android Phone	2hr/week					
Forgery Detection of Medical Image.	2hr/week					
Identification of Human Act by Image Processing	2hr/week					
Currency Identification System	2hr/week					
Intelligent Traffic Light Control using Image Processing	2hr/week					
Image Slider using MATLAB						
Total Hours	30					

NOTE: Students must submit one project based on the syllabus at the semester end.

TCET Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

2 -									
B.E. (Electronics Engineering)						B.E. SEM:VII			
Course Name: Special Electronics & Applications						Course Coo	de:PCC-EL	E7025	
Teaching Scheme (Program Specific)					Examination s	cheme			
Modes of Teaching / Learning / Weightage Modes of (Continuous Asses	sment / Eva	luation		
	He	ours Per We	ek- Theory	y (100)			Practical/Oral	Term	Total
							(25)	Work	
								(25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						150
03	-	02@	05	4	25	75	25	25	
		IA	Internal A	ssessment	- Paper	Duratio	on – 1.5Hour		
		ESE : -	Semester E	End Examii	nation P	aper Du	ration - 3 Hours		
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%) Timely									
		con	pletion of	practical (4	40%) an	d Atten	dance (20%)		-)
Prerequ	isite: Analo	g Electronic	s I, Analog	Electronic	s II, Dig	ital Cir	cuit Design, IC and	d Application	ns

Course Objectives: The course aims at providing knowledge of the short channel effects and the different transistors that can be used for high-speed VLSI circuit design

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	Understand the basic CMOS process flow and the different short channel	L1,L2,L3
	effects	
2	Explain the different SOI, FinFET and CNTFET	L1,L2,L3,L4,L5
3	Understand the MOS capacitor and the different integration issues of high	L1,L2,L3,L4
	k dielectric	
4	Understand the need and of germanium nano mosfet	L1,L2,L3
5	Explain Metal gate transistor and its different integration issues	L1,L2,L3
6	Explain the different Emerging nano materials and structures	L1,L2

Module	Topics	Hrs	RBT Levels
No.			
1	Introduction		
	Nano devices, Nano materials, Nano characterization.	06	
	Definition of Technology node, Basic CMOS Process flow.		111213
	MOS Scaling theory, Issues in scaling		11,12,15
	MOS transistors : Short channel effects, Description of a typical 65 nm		
	CMOS technology.		
2	SOI and Vertical Transistors		
	Requirements for Non classical MOS transistor	10	
	SOI - PDSOI and FDSOI, SOI based SRAM design		11121214
	Ultrathin body SOI - double gate transistors, integration issues.		L1,L2,L3,L4, I 5
	Vertical transistors - FinFET and Surround gate FET, Carbon		LJ
	nanotube electronics, bandstructure & transport, devices, applications.		
	Circuit design with FinFET and CNTFET. SRAM design.		
	MOS Capacitor		
3	MOS capacitor, Role of interface quality and related process techniques,		
	Gate oxide thickness scaling trend, SiO2 vs High-k gate dielectrics.	08	11121214
	Integration issues of high-k . Interface states, bulk charge, band offset,		L1,L2,L3,L4
	stability, reliability - Qbd high field, possible candidates, CV and IV		
	techniques.		
4	Germanium Nano MOSFETs	08	L1,L2,L3

	Strain, quantization, Advantages of Germanium over Silicon, PMOS versus NMOS. Compound semiconductors - material properties, MESFETs Compound semicocnductors MOSFETs in the context of channel quantization and strain, Hetero structure MOSFETs exploiting novel materials, strain, quantization		
5	Metal Gate Transistor	08	L1,L2,L3
	Metal gate transistor: Motivation, requirements, Integration Issues. Transport in Nano MOSFET, velocity saturation, ballistic transport, injection velocity,		
	velocity overshoot.		
6	Emerging nano materials	05	L1,L2
	Nanotubes, nanorods and other nano structures, LB technique, Soft		
	lithography etc. Microwave assisted synthesis, Self assembly etc.		

Books and References:

SR. No.	Title	Authors	Publisher	Edition	Year
1	Fundamentals of Modern VLSI Devices	Y. Taur and T. Ning	Cambridge University Press	First	1998
2	Silicon VLSI Technology	Plummer, Deal, Griffin Pearson Education India.		First	2009
3	Nanoelectronic Circuit Design	Niraj K. Jha, Deming Chen	Springer	First	2010
4	FinFETs and Other Multigate Transistors	Jean-Pierre Colinge	Springer	First	2008
5	SOI Circuit Design Concepts	Kerry Bernstein and N.Kluwer AcademicJ. RohrerPublishers		First	2000
6	The Physics of Low- Dimensional Semiconductors	John H. Davies	Cambridge University Press.	First	1998

Online References:

SR.	Website Name	URL	Modules
1	NPTEL	http://ece.iisc.ernet.in/~navakant/nano/2 007/course.html.	M1,M3,M4,M6

@ Practical to be conducted in Capstone Mode

Suggested list of Practical/ Experiments as a mini project:

Work to be done	Hrs.
Identification and Study of the different sort channel effects	8
Project Title Identification	2
Testing of the basic circuits on circuit simulator	2
Design the layout of the circuit	6
Analyze the circuit with respect to the speed, power operations	6
Testing of Mini Project	2
Preparation of Report	4
Total Hours	30

NOTE: Students must submit one project based on the syllabus at the semester end.

	B.E. (Electronics Engineering)				B.]	E. SEM: VII			
	Course Name: Economics for Engineers					Course Co	de: HSMC- E	LE701	
	Teaching Scheme (Program Specific)					I	Examination	scheme	
Mo	des of Teacl	hing / Learni	ng / Weight	age	Mod	es of Cor	ntinuous Asse	essment / Eval	uation
Hours Per Week				Theor	ry (100)	Practical/	Term	Total	
							Oral (25)	Work (25)	
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	OR	TW	
			Hours						100
03	-	-	03	3	25	75	-	-	
		IA : Ir	nternal Asses	ssment - Pa	per Dur	ation – 1.	5Hour		
	ESE : - Semester End Examination Paper Duration - 3 Hours								
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely									
	completion of practical (40%) and Attendance (20%)								
Prerequi	site: Basic N	Iathematics							

Course Objectives: Engineering economics is a field that addresses the dynamic environment of economic calculations and principles through the prism of engineering

Course Outcomes: Students will be able to:

SN	Course Outcomes	RBT level
1	To understand the principles of economics that govern the operation of any	L1, L2
	organization under diverse market conditions	
2	Comprehend macroeconomic principles and decision making in diverse	L1, L2, L3, L4
	business set up .	
3	To study the Inflation & Price Change as well as Present Worth Analysis	L1, L2, L3, L4
4	Apply the principles of economics through various case studies	L1, L2, L3, L4
5	Analyze the estimating models for economics decision	L1, L2, L3, L4
6	Apply the principles of economics through various case studies	L1, L2, L3

Module	Topics	Hr	Cognitive Levels as
No.		s.	per Bloom's Texonomy
-	Economic Desisions		Тахоношу
	Economic Decisions		
1	Economic Decisions Making – Overview, Problems, Role, Decision	6	L1,L2,L3
	making process, Inflation and Price Change, Present Worth Analysis		
	Cash flow		
	Cash Flow, Interest and Equivalence: Cash Flow – Diagrams,		
2	Categories & Computation, Time Value of Money, Debt repayment,	7	111213
2	Nominal & Effective Interest. Cash Flow & Rate of Return Analysis	/	L1, L2, L3
	Calculations, Treatment of Salvage Value,		
	Cost and Estimation		
	Engineering Costs & Estimation – Fixed, Variable, Marginal &		L1,L2,L3,L4
3	Average Costs, Sunk Costs, Opportunity Costs, Recurring and	8	
	Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs,		
	Life-Cycle Costs; Types of Estimates,		
	Modelling		
4	Estimating Models - Per-Unit Model, Segmenting Model, Cost		L1,L2,L3,L4
	Indexes, Power-Sizing Model, Improvement & Learning Curve,	8	
	Benefits. Case Study - Price and Income Elasticity of Demand in the		
	real world		
5	Cash flow aspects analysis	8	

EVALUATION CONTROL CON

	Annual Cash Flow Analysis, Analysis Periods; In-Semester Rate Of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing An Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity And Breakeven Analysis. Economic Analysis In The Public Sector - Quantifying And Valuing		L1,L2,L3,L4
	Benefits & drawbacks.		
	Economic Decisions & Case studies		
6	Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In	8	L1. L2.L3
-	Engineering Economic Analysis, Cash Flows that inflate at different	-	,,
	Rates.Case Study – Competition in the Advertise Segment in India		

Books and References:

Sr.	Title	Authors	Publisher	Edition	Year
No.					
1	Engineering Economics	James L.Riggs, David D.	Tata	4 th	2004
		Bedworth, Sabah U.	McGraw-Hill	Edition	
		Randhawa			
2	Engineering Economics Analysis	Donald Newnan, Ted	Oxford press	3rd	2004
		Eschembach, Jerome		Edition	
		Lavelle			
3	Principle of Engineering	John A. White, Kenneth		9th	2012
	Economic Analysis	E.Case,DavidB.Pratt	John Wiley	Edition	
			-		
4	Engineering Economics Analysis	Author : Michael R	Professional	1st	1997
		Lindeburg	Pubns Inc	Edition	

Online References:

Sr.	Website Name	URL	Modules
No.			Covered
1	https://ocw.mit.edu/courses/economi	https://ocw.mit.edu/courses/economics/	M1,M2,M3,M
	cs/		4,M5
2	https://onlinecourses.nptel.ac.in/noc2	https://onlinecourses.nptel.ac.in/noc20_hs	M1,M2,M3,M
	0_hs03/preview	03/preview	4,M5

Suggested Case study: case study relevant to industry, national or international level

Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

				B.E. Sei	nester	-VII				
	B.E. (Electronics Engineering)				B.E.	SEM: VII				
	Course Name: Major Project -I				Course Cod	e: PROJ- ELE7	01			
Te	Teaching Scheme (Program Specific)				Ex	aminat	ion Scheme (Form	ative/ Summat	ive)	
Mod	Modes of Teaching / Learning / Weightage				Μ	Modes of Continuous Assessment / Evaluation				
	Ho	ours Per We	ek		The (1	eory 00)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR	TW	50	
-	-	6	6	3			25	25	50	
Prerequi	Prerequisite: This project work in final year may be extension of the Mini Project work done in pre-final year.									

Course Objective: The project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year

Course Outcomes: Students will be able to:

SN	Course Outcomes	Cognitive
		Level s as per
		Blooms
		Taxonomy
1	Learning additional skills	L1, L2, L3,
		L4,L5
2	Development of ability to define, design, analysis and implementation of the	L1, L2, L3,
	problem and lead to its accomplishment with proper planning	L4,L5
3	Learn the behavioral science by working in a group	L1 L2 L3
4	The project area may be selected in which the student intend to do further	L1, L2, L3,
	education and/or may be either intend to have employment or self employment	L4,L5
5	Learn the behavioral science by working in a group	L1, L2, L3,
		L4,L5
6	The topic of project should be different and / or may be advancement in the same	L1, L2, L3,
	topic of Mini Project	L4,L5

Module	Topics	Hrs.	Cognitive
INO			Level s as
			Texonomy
1	The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be		L1, L2, L3, L4,L5
	I. Learning additional skills		
	II. Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment	06/	

	with proper planning	week	
III	Learn the behavioral science by working in a group		
IV	. The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self-employment		
V.	The topic of project should be different and / or may be advancement in the same topic of Mini Project		
VI	The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Project work.		
The Insproject TW ma appoint	stitute should keep proper assessment record of the progress of and at the end of the semester it should be assessed for awarding arks. The TW should be examined by approved internal faculty ed by the head of the institute on the basis of following:		
I.	Scope and objective of the project work.		
II.	Extensive Literature survey.		
III			
IV	Progress of the work (Continuous assessment)		
	Progress of the work (Continuous assessment) Report in prescribed University format.		

Image: Second state Image: Second state<

B.E. Semester –VII Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS-H 2019) TCFT Autonomy Scheme (w e f A V 2020-21)

			ICEI Auto	nomy scheme	(w.e.i. A. I . 2020-2)	L)		
		B.E. (El	ectronics Engin	eering)		B.I	E.(SEM : VII)	
	Course Name : Professional Skills- VII						HSD-ELEPS701	
Teaching Scheme (Program Specific) Examin					Examination Sche	mination Scheme (Formative/ Summative)		
	Modes of Te	aching / Lear	ning / Weightag	ge	Modes of Continu	ous Assessment / E	valuation	
Hours Per Week				Presentation	Report	Term Work		
Theory	Tutorial	Practical	Contact Hours	Credits	AC	AC	TW	
15	-	30	45	2	50	25	75	
Audit course evaluated by Teacher Guardian								
	Mid Semester Assessment for Term work will be on continuous basis							
Prerequi	site: Subject	knowledge, D	omain knowledge	e				

Objective: The course intends to develop professional skills necessary for becoming technically skilled personnel. The course intends to make students aware about how to design digital skills / application to be an successful Industry person /entrepreneur

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Illustrate important of digital skills .	L1, L2
2	Familiarization of latest and emerging digital skills/suite tools.	L1,L2, L3
3	Learning Installation/usage of tools.	L1,L2, L3
4	Write test cases using digital tools.	L1,L2, L3
5	Identify the various commands and their usage.	L1, L2, L3
6	Apply skills to design simulation based applications such as /robot design	L1, L2, L3

Detailed Syllabus:

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	Basics of digital Skills		
	Introduction to digital skills, types of digital skills, Need of		
	collaboration digital skills, Exercise to manually and report	3	L1, L2
	errors.		
2	Introduction to digital skill tools		
	Presentation desk and its types, QR code generation and reading,	2	L1,L2, L3
	Augmented reality experience and usage		
3	Basics of Application development		
	Step for creating presentation desk with QR code, Step for	•	
	creating AR Experience with available tools, Basics of Robot	2	L1,L2, L3
	design tool, Installation process and operation basics		
4	Application Commands		
	Learning various Commands – level 1,2,3(Actions button,	3	L1,L2, L3
	rotation, if else), Create a script and test it		
5	Design of Application		L1, L2, L3
	Design of ideation, selection of commands and its		
	implementation., Writing script using a learned tool, Use of	3	
	level 3 commands in Robot development		
6	Case Study		
	Write a complete executable code for assigned task	2	L1,L2, L3
	Total Hours	15	

Books and References:

SN	Title	Authors	Publisher	Edition	Year
1	Robot Building for Beginners	David Cook	Apress	2nd	2010
	(Technology in Action)			Zind	
2	Winning in the Digital Age:	Nitin Seth	Penguin	1 st	2021
	Seven Building Blocks of a		Enterprise	1	
	Successful Digital				
	Transformation Hardcover – 24				
	February 2021				
	-				

Online References:

S. No.	Website Name	URL	Modules Covered
1	https://www.coursera.or g/	https://www.coursera.org/in	M1, M2,
2	https://www.udemy.com	https://www.udemy.com/course/mak e-money-from-your-digital-skills/	M3,M4

4	https://www.coursera.org	https://www.coursera.org/collections/pro	M4,M5,M6
	/	duct-manager-skills	

Image: Department of Electronics Engineering (Elex) Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

List of Practical/ Experiments:

Practic	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of
al Normh				attainment as per
Numbe r				Bloom's Tayonomy
1		To generate OR code	2	L1
-			-	
2	Basic Experiments	To generate Augmented reality experience	2	L1, L2
3		Design presentation desk	2	L1, L2, L3
4	Design Functiments	Write program using Line movement using level 1 command	2	L1, L2, L3
5	Design Experiments	Write program using Line movement using level 2 command	2	L1, L2, L3
6		Write program using Level 3 commands	2	
7	Advanced Experiments	Write program using level 3 commands to draw diamond	4	L1, L2, L3
8	Experiments	Write program using sensors	4	L1, L2, L3
9	Mini/Minor Projects/ Seminar/	 To design a square To design command-based light on /OFF To design touch-based movement 	6	L1, L2, L3
10	Case Studies/ Group Presentation	 Study other tools used for digital skills testing To create presentation desk for assigned project To create QR code for presentation desk To create 3D experience for assigned task 	4	L1, L2, L3
		Total Hours	30	

TCET

tce

DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (Accredited by NBA for 3 years, 2nd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	B.E. Semester –VII							
	B.E. (I	Electronics I	Engineering	g)			B.E. SEM: VII	
Course Name: Research Based Learning -III				Course	e Code: HSD-ELE	RBL701		
Teaching Scheme (Program Specific)				Examina	ation Scher	ne (Formative/ Su	ummative)	
Modes of Teaching / Learning / Weightage			1	Assessment	/Evaluation Sche	me		
Hours Per Week			Presen	tation	Report	Term Work		
Theory	Tutoria l	Practical	Contact Hours	Credit s	AC		AC	TW
30 30 1					25	5	25	50
	Audit course evaluated by Teacher Guardian							
	Mic	l Semester A	ssessment	for Term w	ork will be	on continu	ous basis	

Prerequisite: Subject knowledge, Domain knowledge

Course Objectives: This course is focused to engage the learner in research using critical thinking, problem solving, coding and technical writing related to upcoming latest technologies.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

S.N.	Course Outcome	Cognitive level attainment as per revised Bloom Taxonomy
1	Upgrade the knowledge of latest technologies and developments in their	L1, L2
	domain.	
2	Develop prototype based on idea which providing solutions to industry,	L1, L2, L3,L4,15,L6
	research organization, academic organization, community or society as a	
	whole.	
3	Design and develop the code /model for given problem definition in a	L1, L2, L3,L4,15,L6
	competitive environment and contribute for grants.	
4	Write a research paper and understand technical writing.	L1, L2, L3,L4,15

Mo dul e No.	Topics	Hours	Cognitive level attainment as per revised Bloom Taxonomy
1	Participation in online community / Forums/writing Blogs	8	L1, L2
	I. Registration on online community/forum/follow blogs /Twitter etc.		
	Creating own Blogs and Linkedin profile.		
	II. Evaluation is based on report submission on activities learned through		
	registration on various platforms. Student need to submit Linkedin profile		
	address, Blog URL is recommended		
	Presentation and Evaluation		
2	Proto type development/ Mathematical model development based on	8	L1, L2,
	Idea		L3,L4,15,L6
	I. Proto type development: Introduction to Research Methodology		
	techniques. Introduction and importance of prototype development.		
	Transforming Idea into prototype with implementation/working model.		
	II. Presentations by students, Experience sharing by entrepreneurs or		
	Hackathon Winners.		
	Presentation and Evaluation		

RAD-AZH H	Icei Icei DEPARTMENT OF ELECTRONICS ENGINEERING (ELEX) (accredited by NBA for 3 years, 2 nd Cycle Accreditation w.e.f. 1 st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) (bit in 2011) Under TCET-Autonomy Scheme - 2019 (bit in 2011)				
3	Building Competitive Attitude	8	L1, L2,		
	I. Participation in Project competitions/Coding competitions/Working		L3,L4,15,L6		
	for research grant/Consultancy: a) Participating at institute/National				
	level/University level/ Conference /participate in competitions. b)				
	Participation in funded project/consultancy projects c) Experience sharing				
	by good coders/winners				
	II. Evaluation based on Presentation/Certificates/ Grant				
	received/Consultancy received				
	Presentation and Evaluation				
4	Research Paper Publication	6	L1, L2,		
	I. Introduction to Research paper writing: Write a paper/case study on]	L3,L4,L5,L6		

I. Introduction to Research paper writing: Write a paper/case study on	L3,L4,L5,L6
review of literature based on idea and developed prototype.	
II. Publishing: Identification of appropriate journal or conference at	
University level / State level/National level for submission and Preparation	
of a review paper.	
Evaluation of Research paper based on quality and acceptance of	
research paper.	

References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1.	Guide to Competitive Programming: Learning and Improving Algorithms Through Contests	Antti Laaksonen	Springer	Kindle	2018
2.	Writing Research Papers: A Complete Guide	James D. Lester	Longman	10th	2001
3.	Creativity in Product Innovation	Jacob Goldenberg	Cambridge University Press	Kindle	2002

Online References:

Sr. No.	Website Name	URL	Modules
			Covered
1.	https://www.researchgate.	https://www.researchgate.net/publication/224372998_Idea_Generation_T	M2
	net	echniques_among_Creative_Professionals	
2.	https://discuss.codechef.c	https://discuss.codechef.com/t/programming-contest-detailed-syllabus-	M3
	om	along-with-example-problems/17791	
3.	https://www.statpac.com	https://www.statpac.com/online-software-manual/Basic-Research-	M4
		Concepts.htm	
4.	https://www.slideshare.ne	https://www.slideshare.net/AsirJohnSamuel/1introduction-to-research-	M4
	t	methodology?next_slideshow=1	