UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18
Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20

As per Choice Based Credit and Grading System

with effect from the AY 2016-17

T.E. (Electronics Engineering) – Semester V

Course Code	Course Name		eaching Sche Contact Hou			Credits As	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX501	Microcontrollers and Applications	04			04			04
ELX 502	Digital Communication	04	-		04			04
ELX 503	Engineering Electromagnetics	04	-	@01	04		01	05
ELX 504	Design with Linear Integrated Circuits	04	02		04			04
ELX 505	Business Communication & Ethics	02	02#			02		02
ELXDLO501X	Department Level optional courses I	04	02		04			04
ELXL501	Microcontrollers and Applications Lab.					01		01
ELXL502	Digital Communication Lab.					01		01
ELXL503	Design with Linear Integrated Circuits Lab.					01		01
ELX DLOI50X	Department Level optional course-I Lab					01		01
	TOTAL	20	08	04	20	06	01	27

1 hour tutorial class-wise #02 hours batch-wise

				Exar	nination S	cheme – Se	mester V		
				Theory					
		Internal Assessment (IA) En				Exam	Term	Oral	
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total
					Exam	on			
					Marks	(Hours			
)			
ELX501	Micro-controllers and Applications	20	20	20	80	03			100
ELX 502	Digital Communication	20	20	20	80	03			100
ELX 503	Engineering Electromagnetics	20	20	20	80	03	25		125
EL V 504	Design with Linear Integrated	20	20	20	80	03			100
ELX 504	Circuits	20	20	20	80	03			100
ELX 505	Business Communication & Ethics						50		50
ELX DLO501X	Department Level Elective-I	20	20	20	80	03			100
ELXL501	Micro-controllers and Applications						25	25	50
ELALSUI	Lab.						23	23	30
ELXL 502	Digital Communication Lab.						25		25
ELXL 503	Design with Linear Integrated						25	25	50
ELAL 503	Circuits Lab.						23	23	50
ELXL	Department Elective I lab						25	25	50
DLO501X	Department Elective Flau						23	23	50
	Total	100	100	100	400	15	175	75	750

Course Code	Department Level Optional Course I
ELXDLO5011	Database and Management System
ELXDLO5012	Digital Control system
ELXDLO5013	ASIC Verification
ELXDLO5014	Biomedical Instrumentation

Course Code	(Course	Name	;	Tea	aching	schen	ne		Credi	t assig	ned	
ELX	Mior	occant	rollers	and	Theory	Pra	ct.	Tut.	Theory	Pract.	Tu	t. 1	Γotal
501		Applica		anu –	04				04				04
	•			•		···	· · ·	Exami	nation Sc	heme	•	.	
						Theor	y						
Course	Cor	ırse N	ame		Internal		Dura	ı- Term			Pract.		
Code	000	- Course I (unite			ssessmo	ent	End	tion (hrs)		Pract.	Oral	/ Oral	Total
				Test 1	Test 2	Avg.	sem	(III'S)				, , ,	
ELX 501	Microcontrollers 20 &Applications			20	20	20	80	03			-		100
Cour	se Cod				I	C	ourse	Name	<u>'</u>	u.		Cred	dits
EL	ELX 501 Microcontrollers and Applications						04	04					
Course			to adv	anced	32-bit a	architec	ture.		ire for sys	tem desig	n along	g with ex	posure
Course	Outco	omes	1. 2. 3. 4.	Deve Desi	elop ass gn and i	embly l implem	angua ent 80	ige prog 151 base	chitecture. grammes f ed systems rtex-M3 a			ntroller.	
Module							Cont	ents				r	Time
		8051	Micro	contr	oller Ar	chitect							
	1.1	Intro	duction	to mi	crocont	roller.							
1.	1.2	Over	view o	f MCS	51 fami	ly.							04
	1.3	8051	archite	ectural	features	s.							
	1.4	Mem	ory org	ganisat	ion.								
							langu	iage pr	ogrammi	ng			
2.	2.1				of 805								10
	2.2							ic, Log	ical, Branc	ching.			
	2.3				ge Prog			•					
	2.1				rdware			ming					
2	3.1				and prog		ng.						10
3.	3.2				grammii								10
	3.4				d progra		•						
	3.4	1			gramm & Appl		c						
4.	4.1							enlav 1	6x2 gener	ic alnhan	umeric		12
	7.1	Dish.	iay iiic	TIACIII	5. 1-30g	mont L	טט ענו	spray, 1	OAL gener	ic aipnan	umenc		

		LCD display.			
	4.2	Keyboard interfacing: 4x4 matrix keyboard.			
	4.3	Analog devices interfacing: 8-bit ADC/DAC, temperature sensor (LM35).			
	4.4	Motor interfacing: Relay, dc motor, stepper motor and servo motor.			
		ARM CORTEX-M3 Architecture			
	5.1 Comparison of CISC & RISC architectures, overview of ARM family.				
		ARM Cortex-M3 architecture, Programmer's model: Operation Modes and			
5.	5.2	States, registers, special registers, Application Program Status Register-	12		
		Integer status flags, Q status flag, GE bits.			
	5.3	Memory system: Features and memory map			
	5.4 Exceptions and Interrupts-Nested vectored interrupt controller				
	ı	Total	48		

Text books:

- 1.M. A. Mazidi, J. C. Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems Using Assembly and C", Pearson Education, 2ndEdition.
- 2.Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

- 1. Kenneth J. Ayala, "The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, 3rdEdition.
- 2. David Seal, "ARM Architecture", Reference Manual (2nd Edition), Publisher Addison Wesley.
- 3. Andrew Sloss, Dominic Symes, Chris Wright, "ARMSystem Developers Guide: Designing and Optimising System Software", Publisher Elsevier Inc. 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teach	Teaching Scheme (Hrs.) Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX 502	Digital	4			4			04
	Communication							

Subject	Subject Name				Examination	Schem	e		
Code			T	heory Marks		Term	Practical	Oral	Total
		Inte	Internal assessment End Sem.			Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX 502	Digital	20	20	20	80	-			100
	Communication								

Course Pre-requisite: ELX405 Principles of Communication Engineering

Course Objectives:

The objectives of this course are to:

- 1. Understand the typical subsystems of a digital communication system
- 2. Understand the significance of the trade-off between SNR and Bandwidth
- 3. Understand the effect of ISI in Baseband transmission of a digital signal.
- 4. Analyze various Digital modulation techniques
- 5. Identify the necessity of Source encoding and Channel encoding in Digital communication

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Comprehend the advantages of digital communication over analog communication and explain need for various subsystems in Digital communication systems
- 2. Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique.
- 3. Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its
- 4. Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency , Power efficiency, Probability of error in detection
- 5. Explain the concept and need for designing efficient Forward Error Correcting codes.
- 6. Realize the areas of application of Digital communication.

Module No.	Unit No.	Topics	Hrs.
		Introduction to Digital communication system:	
	1.1	A typical Digital communication system, Advantages and disadvantages of Digital transmission, significance of digitization: PCM encoding of voice and image signals.	
1.	1.2	Concept of Probability Theory in Communication Systems: Random variables, Mean and Variance of Random variables and sum of random variables ,Definition with examples,	06
	1.3	Useful PDFs & CDFs: Gaussian, Rayleigh pdf & Rician Distribution, Binomial Distribution, Poisson Distribution, Central-Limit Theorem, Binary Synchronous Channel(BSC), development of Optimal receiver	
		Information Theory and Source Coding	
2.	2.1	Measure of Information, Entropy, Information rate, Channel capacity, Shannon – Hartley Capacity Theorem and its Implications.	06
	2.2	Shannon-Fano encoding, Huffman encoding, Code Efficiency & Redundancy. Pulse Shaping for Optimum Transmission:	
	3.1	Line codes and their desirable properties, PSD of digital data	
3.	3.2	Baseband PAM transmission: Concept of Inter symbol interference(ISI),Raised Cosin filter, Nyquist Bandwidth. Concept of equalizer to overcome ISI	
	3.3	Correlative coding: Duo-binary encoding and modified duo-binary encoding	-
		Digital Modulation Techniques	
	4.1	Concept of Binary and M-ary transmission, Coherent and Non- Coherent reception, Power spectral density of Pass-band signal, Signal space Representation and Euclidian distance	
4.0	4.2	Pass Band Amplitude modulation & Demodulation: BASK, M-ary PAM, Digital Phase Modulation & Demodulation: BPSK, OQPSK, QPSK, M-ary PSK, QAM, Digital Frequency Modulation & Demodulation: BFSK, MSK, M-ary FSK	14
	4.3	Comparison of all techniques based on Spectral efficiency, Power efficiency, Probability of error in detection	
	4.4	Optimal Reception of Digital Data : A baseband signal receiver and its Probability of error, The Optimum receiver, Matched filter, & its properties.	
5.0		Error Control codes:	10
0	5.1	Need for channel encoding, Concept of Error detection and correction, Forward Error	1

		correction	
	5.2	Linear block codes: Hamming Distance, Hamming Weight, Systematic codes ,Syndrome Testing	
	5.3	Cyclic codes; Generator polynomial for Cyclic codes, Systematic cyclic codes, Feedback shift register for Polynomial division	
	5.4	Convolution codes: Convolution encoder, Impulse response of encoder, State diagram, trellis diagram Representations	
		Applications of Digital communication	
	6.1	Satellite communication system: Satellite communication System model, Transponder, Satellite Orbits: LEO, MEO, GEO, Link analysis	
6.0	6.2 Optical Communication system : Advantages of Optical communication ,Signal transmission in Optical fibres, Optical sources and Optical Detectors, Optical Digital Communication system.		06
	I	Total	48

Recommended Text Books:

- 1. Simon Haykin, "Communication System", John Wiley And Sons ,4th Ed
- 2. Taub Schilling & Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed
- 3. B P Lathi & Zhi Ding ,"Modern Digital and Analog communication systems" -4E, Oxford University Press , Indian Ed.
- 4. R N Mutagi, "Digital Communication", Oxford University Press, 2nd Ed.

Reference Books:

- 1. Bernad Sklar,- "Digital communication", Pearson Education, 2nd Ed.
- 2. Simon Haykin, "Digital communication", John wiley and sons
- 3. PROAKIS & SALEHI, "Communication system Engineering", Pearson Education.
- 4. Anil K.Maini & Varsha Agarwal, "Satellite communications", Wiley publication.
- 5. Amitabha Bhattacharya, "Digital Communication", Tata Megraw Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject	Subject Name				Examination	Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total				
		Internal assessment			End Sem.	Work							
		Test 1	Test Ave. Of		Exam								
			2 Test 1 and										
				Test 2									
ELX503	Electromagnetic	20	20	20	80				100				
	Engineering												
Subject	Subject Name				Examination	Scheme	2		·				
Code			T	heory Marks		Term	Practical	Oral	Total				
		Inte	rnal as	ssessment	End Sem.	Work							
		Test 1	Test	Ave. Of	Exam								
			2	Test 1 and									
				Test 2									
ELX503	Electromagnetic	20	20	20	80				100				
	Engineering												

Course Objectives:

- 1. To study correlation between electrostatics, steady magnetic field and time varying fields using Maxwell's equations for different media.
- 2. To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- 3. To solve electromagnetic problems using different numerical methods.
- 4. To extend the students' understanding about the propagation of the waves of different types.
- 5. To understand the radiation concepts.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Analyze the behaviour of electromagnetic waves in different media.
- 2. Evaluate various parameters of transmission lines and radiating systems.
- 3. Apply computational techniques to analyze electromagnetic field distribution.
- 4. Understand different mechanisms of radio wave propagation.

Module No.	Unit No.	Topics	Hrs.
		Basic Laws of Electromagnetic and Maxwell's Equations	
1.0	1.1	Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's and Laplace equations	10
1.0	1.2	Maxwell's Equations: Integral and differential form for static and time varying fields and its interpretations	
	1.3	Boundary conditions for Static electric and magnetic fields	
		Electromagnetic Waves	
	2.1	Wave Equation and its solution in partially conducting media(lossy dielectric), perfect dielectrics, free space and good conductors, Skin Effect and concept of Skin depth	
2.0	2.2	Polarization of wave: Linear, Circular and Elliptical	12
2.0	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space, dielectric and conducting media	12
	2.4	Propagation in different media: Behavior of waves for normal and oblique incidence in dielectrics and conducting media, propagation in dispersive media	

		Computational Electromagnetics			
	2.1	Finite Difference Method (FDM): Neumann type and mixed boundary conditions,			
	3.1	Iterative solution of finite difference equations, solutions using band matrix method			
3.0		Finite Element Method (FEM): triangular mesh configuration, finite element	06		
	3.2	discretization, element governing equations, assembling all equations and solving			
		resulting equations			
	3.3	Method of Moment (MOM): Field calculations of conducting wire			
		Fundamentals of Radiating Systems			
	4.1	Concept of retarded potentials, Lorentz Condition			
	4.2	Radiation from an alternating current element, half-wave dipole and quarter-wave			
4.0	4.2	monopole	06		
		Antenna Parameters: Radiation Patterns, beam-width, Radiation intensity, directivity,			
	4.3	power gain, band-width, radiation resistance and efficiency, effective length and			
		effective area			
		Radio wave propagation			
	5.1	Types of wave propagation: Ground, space, and surface wave propagation			
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of			
5.0	5.4	interference zone, Line of sight propagation, troposphere propagation and fading	06		
2.0	5.3	Sky wave propagation: Reflection and refraction of waves, structure of Ionosphere	00		
		Measures of ionosphere propagation: Critical frequency, Angle of incidence,			
	5.4	Maximum usable frequency, Skip distance, Virtual height			
		Transmission Lines			
	6.1	Transmission Line parameters and equivalent circuit			
6.0	0.1	Transmission line equation and solution	08		
	6.2	Sacandary Parameters: Propagation constant characteristic impedance reflection and			
	0.2	transmission coefficient, Input Impedance, SWR, introduction to Smith chart			
		Total	48		

Recommended Books:

- 1. W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, 7th Edition, 2006
- 2. R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, 3rd Edition, 2009
- 3. Edward C. Jordan and Keth G. Balmin, "Electromagnetic Waves and Radiating Systems", Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student 4th Edition, 2007
- 5. J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme					Credits Assigned					
		Theory	Practi	ical	Tutor	rial	Theory	TW/Pr	act	t Tutorial		Total
ELX504	Design with Linear Integrated Circuits	04					04			-		04
			Examination Scheme									
		Theory Marks										
		Internal assessment										
Subject Code	Subject Name	Test 1	Test 2	Te a	g. of est 1 nd est 2		d Sem. Exam	Term Work	Prac	с. (Oral	Total
ELX504	Design with Linear Integrated Circuits	20	20	2	20		80					100

Course Pre-requisite:

• Electronic Devices and Circuits I and II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate an understanding of fundamentals of integrated circuits.
- 2. analyze the various applications and circuits based on particular linear integrated circuit.
- 3. select and use an appropriate integrated circuit to build a given application.
- 4. design an application with the use of integrated circuit

Module	Unit	Topics	Hrs.					
No.	No.							
1	Fundan	nentals of Operational Amplifier	04					
	1.1	Ideal Op Amp, characteristics of op-amp, op-amp parameters, high frequency						
		Sects on op-amp gain and phase, slew rate limitation, practical determination of						
		op-amp parameters, single supply versus dual supply op-amp						
	1.2	Operational amplifier open loop and closed loop configurations, Inverting and						
		non-inverting amplifier						
2	Applica	ns of Operational Amplifier						
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current amplifier,						
		difference amplifier, instrumentation amplifier and application of Op-Amp in						
		Transducer Measurement System with detail design Procedure. Single supply dc						
		biasing techniques for inverting, non inverting and differential amplifiers.						
	2.2	Converters: Current to voltage converters, voltage to current converters,						
		generalized impedance converter						
	2.3	Active Filters: First order filters, Second order active finite and infinite gain low						
		pass, high pass, band pass and band reject filters.						

	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,						
		Quadrature oscillator.						
3	Non-Li	inear Applications of Operational Amplifier						
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing detector, window detector and level detector.						
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with adjustable threshold levels.						
	3.3	Waveform Generators: Square wave generator and triangular wave generator with duty cycle modulation.						
	3.4	Precision Rectifiers: Half wave and full wave precision rectifiers and their applications.						
	3.5	Peak Detectors, Sample & Hold Circuits, voltage to frequency converter, frequency to voltage converter, logarithmic converters and antilog converters						
4	Data C	ata Converters						
	4.1	Analog to Digital: Performance parameters of ADC, Single Ramp ADC, ADC using DAC, Dual Slope ADC, Successive Approximation ADC, Flash ADC, ADC0808/0809 and its interfacing						
	4.2	Digital to Analog : Performance parameters of DAC, Binary weighted register DAC, R/2R ladder DAC, Inverted R/2R ladder DAC, DAC0808 and its interfacing						
5	Special	Purpose Integrated Circuits	08					
	5.1	Functional block diagram, working, design and applications of Timer 555.						
	5.2	Functional block diagram, working and applications of VCO 566, PLL 565, multiplier 534, waveform generator XR 2206, power amplifier LM380.						
6	Voltage	e Regulators	08					
	6.1	Functional block diagram, working and design of three terminal fixed (78XX, 79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.						
	6.2	Functional block diagram, working and design of general purpose 723 (LVLC, LVHC, HVLC and HVHC) with current limit and current fold-back protection, Switching regulator topologies, Functional block diagram and working of LT1070 monolithic switching regulator.						
		Total	48					

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4th Edition
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 6. R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 3rd Edition.
- 7. Ron Mancini, "Op Amps for Everyone", Newnes, 2nd Edition.
- 8. J. Millman and A. Grabel, "Microelectronics", Tata McGraw Hill, 2nd Edition.
- 9. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- 10. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", NewYork: McGraw-Hill, Burr-Brown Research Corporation.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory preferably objective type and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	e	Teach	ning sche	me	Credit assigned						
ELX	Database		Theory Pract. Tut		Tut.	Theory	Pract.	Tut.	Total			
DLO5011	Management System	t	04			04			04			
	Subject	Examination Scheme										
Subject		Int		Cheory Management			TD					
Code	Name	Test 1	Test 2	Avg. o Test 1 a Test	and	End Sem. Exam	Term Work	Practical	Oral	Total		
ELX DLO5011	Database Management System	20	20	20		80				100		

Prerequisite:

Basic knowledge of Data structure.

Course objectives:

- 1. Learn and practice data modelling using the entity-relationship and developing database designs.
- 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- 3. Apply normalization techniques to normalize the database
- 4. Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

Course outcomes: On successful completion of course learner will be able to:

- 1. Understand the fundamentals of a database systems
- 2. Design and draw ER and EER diagram for the real life problem.
- 3. Convert conceptual model to relational model and formulate relational algebra queries.
- 4. Design and querying database using SQL.
- 5. Analyze and apply concepts of normalization to relational database design.
- 6. Understand the concept of transaction, concurrency and recovery.

Module No.	Unit No.	Topics	Hrs.
		Introduction Database Concepts:	4
	4.4	Introduction, Characteristics of databases	
1.0	1.1	File system v/s Database system Users of Database system	4
	1.2	Data Independence DBMS system architecture Database Administrator	· ·
		Entity–Relationship Data Model	
		The Entity-Relationship (ER) Model: Entity types: Weak and strong entity	-
2.0	2.1	sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model: Generalization, Specialization and Aggregation	8
		Relational Model and relational Algebra	
3.0	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model	8
	3.2	Relational Algebra – unary and set operations, Relational Algebra Queries.	
		Structured Query Language (SQL)	
4.0	4.1	Overview of SQL Data Definition Commands, Data Manipulation commands, Data Control commands, Transaction Control Commands.	12
	4.2	Set and string operations, aggregate function - group by, having. Views in SQL, joins, Nested and complex queries, Integrity constraints:- key constraints, Domain Constraints, Referential integrity, check constraints	
	4.3	Triggers	

5.0		Relational-Database Design	
	5.1	Pitfalls in Relational-Database designs, Concept of normalization Function Dependencies, First Normal Form, 2nd, 3rd, BCNF, multi valued dependencies, 4NF.	8
6.0		Transactions Management and Concurrency	
	6.1	Transaction concept, Transaction states, ACID properties Concurrent Executions, Serializability – Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols.	12
	6.2	Recovery System: Failure Classification, Log based recovery, ARIES, Checkpoint, Shadow paging. Deadlock handling	
		Total	52

Text Books:

- 1. G. K. Gupta "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 2. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley Publication.
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	e	Teaching scheme				Credit assigned					
ELX	Digital Contr	Th	eory	Pract.	Tut	. The	ory Pi	ract.	Tut.	Total		
DLO5012	Digital Contr Systems		04			04	ı			04		
		Examination Scheme										
Course	Course Name	Theory										
Code		Intern	Internal Assessment			Dura	Term	Pract.	Oral	Total		
		Test 1	Test 2	Avg	sem	tion (hrs)	work					
ELX DLO5012	Digital	20	20	20	80	03				100		
	Control Systems	20	20									

Course Pre-requisite: ELX301: Mathematics III, ELX401: Mathematics IV, ELX406: Linear Control Systems

Course Objectives:

- 1. To introduce the discrete-time systems theory.
- 2. To introduce Z-transform methods in digital systems design.
- 3. To introduce modern state-space methods in digital systems design.

Course Outcomes: At the end of the course, the learner will have the ability to

- 1. Justify the need for digital control systems as well as understand sampling and reconstruction of analog signals.
- 2. Model the digital systems using various discretization methods and understand the concept of Pulse Transfer Function.
- 3. Analyze the digital control systems using classical techniques.
- 4. Analyze the digital control systems using modern state-space techniques.
- 5. Understand the concept of controllability and design the state feedback controllers.
- 6. Understand the concept of observability and design the state observers.

Module		Contents	Time
		Basics of discrete-time signals and discretization	
1.	1.1	Why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system.	06
	1.2	Impulse sampling. Nyquist-Shannon sampling theorem, reconstruction of discrete-time signals (ideal filter)	00
	1.3	Realizable reconstruction methods (ZOH and FOH). Transfer function of ZOH and FOH.	
		Modelling of Digital Control System	
	2.1	Discretization Approaches: Impulse invariance, step invariance, bilinear	
2.	2.1	transformation, finite difference approximation of derivative.	10
	2.2	Z-transform revision and its equivalence with starred Laplace transform.	
	2.3	The pulse transfer function (PTF) and general procedures to obtain PTF.	

		Stability Analysis and Controller Design via Conventional Methods						
	3.1	Mapping between s-plane and z-plane, stability analysis of digital systems						
	3.1	in z-plane. Effects of sampling frequency on stability.						
	3.2	Transient and steady-state analysis of time response, digital controller						
3.	3.2	design using root-locus method.						
	3.3	Digital controller design using bode plots, digital PID controller.						
		Realization of digital controllers: direct programming, standard						
	3.4	programming, series programming, parallel programming, ladder						
		programming,						
		State Space Analysis of Discrete-time Systems						
		Revision of continuous-time state-space models. Solution of continuous-						
4.	4.1	time state-space equation. Discretization of continuous-time state-space						
		solution and discrete-time state-space model.	08					
	4.2	Various canonical state-space forms for discrete-time systems and	Vo					
		transformations between state-space representations.						
		Solution of discrete-time state-space equation. Computation of state-						
		transition matrix (z-transforms, Caley-Hamilton theorem, Diagonalization).						
		Controllability and State Feedback Controller Design						
	5.1	Concept of controllability. Distinction between reachability and						
5.	3.1	controllability in discrete-time systems.	06					
	5.2	Digital controller design using pole-placement methods. (Similarity						
	3.2	transforms, Ackerman's formula).						
		Observability and Observer Design						
6.	6.1	Concept of observability. Distinction between detectability and						
	0.1	observability in discrete-time systems.						
	6.2	Observer design (prediction observer and current observer). Output						
	0.2	feedback controller design. Introduction to separation principle.						
	6.3	Dead-beat controller design, dead-beat observer design.						
Total			48					

Text books:

- 1. **Ogata Katsuhiko**, "Discrete-time Control Systems", Pearson, 2nd Edition, 1995.
- 2. **M. Gopal**, "Digital Control and State Variable Methods", Tata McGrow-Hill, 3rd Edition, 2003.

Reference Books:

- 1. **Gene Franklin, J. David Powell, Michael Workman**, "Digital Control of Dynamic Systems", Addison Wesley, 3rd Edition, 1998.
- 2. **B. C. Kuo**, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 3. Chi-Tsong Chen, "Linear System Theory and Design", Oxford University Press, USA, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teaching scheme				Credit assigned					
ELX	ASIC	The	ory	ract.	Tut.	Theo	ry Pra	act.	T	ut.	Total	
DLO5013	Verification	0	4			04	04				04	
	Course Name	Examination Scheme										
		Theory										
Course Code		Internal Assessment		End	Dura tion	Term work	Pra	Pract.	Oral	Total		
		Test 1	Test 2	Avg	sem	(hrs)	WOLK					
ELX DLO5013	ASIC Verification	20	20	20	80	03			•		100	

Course Pre-requisite: EXC303: Digital Circuits and Design, ELXL304: Object Oriented Programming Methodology Laboratory, ELX 404: Digital System Design

Course Objectives

- 1. To introduce the learner System Verilog concepts for verification.
- 2. To introduce the learner advanced verification features such as practical use of classes, randomization, checking and coverage.
- 3. To highlight the significance of verification in VLSI industry.

Course Outcomes

At the end of the course, the learner will have the ability to

- 1. Demonstrate an understanding of programmable devices and verification methodologies.
- 2. Exploit new constructs in SV and advanced ASIC verification techniques.
- 3. Create test benches for digital designs in system verilog.
- 4. Carry out verification of design successfully using simulators

Module		Contents	Time
		Programmable Devices and Verilog	
1.	1.1	Programmable Devices: Architecture of FPGA, CPLD with an example of Virtex-7 and Spartan -6 family devices	08
		Verilog HDL: Data types, expressions, assignments, behavioural, gate and switch level modelling, tasks and functions	
		Verification Basics and Data Types	
		Verification Basics: Technology challenges, Verification methodology options,	
	2.1	Test bench creation, test bench migration, Verification languages, Verification IP	
2.		reuse, Verification approaches, Layered Testbench, Verification plans	12
		Data Types: Built in, Fixed size array, dynamic array, queues, associative array,	
	2.2	linked list, array methods, choosing a storage type, creating new types with typedef,	
	2.2	creating user defined structures, type conversion, enumerated types, constants,	
		strings, expression width	

		Procedural statements, test bench and Basic OOP	
3.	3.1	Procedural Statements and Routines: Procedural statements, tasks, functions and void functions, task and function overview, routine arguments, returning from a routine, local data storage, time values Connecting the Test bench and Design: Separating the test bench and design, the interface construct, stimulus timing, interface driving and sampling, connecting it all together, top level scope, program-module interactions	12
	3.2	Basic OOP: Class, Creating new objects, Object deal location, using objects, variables, class methods, defining methods outside class, scoping rules, using one class inside another, understanding dynamic objects, copying objects, public vs. local, building a test bench	
		Randomization and IPC	
4.	4.1	Randomization: Randomization in system Verilog, constraint details, solution probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints, The pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques	10
	4.2	Threads and Inter process Communication: working with threads, disabling threads, inter process communication, events, semaphores, mailboxes, building a test bench with threads and IPC	
		Assertions and Functional Coverage	
5.	5.1	System Verilog Assertions: Assertions in verification methodology, Understanding sequences and properties	06
5.	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy of a cover group, triggering a cover group, data sampling, cross coverage, generic cover groups, coverage options	
		Total	48

Text books:

- 1. **Chris Spear**, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 3rd Edition.
- 2. **Janick Bergeron**, "Writing Testbenches Using System Verilog", Springer 2006.
- 3. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design:

A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.

Reference Books:

- 1. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, 3rd edition
- 2. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 3. System Verilog Language Reference manual
- 4. Samir Palnitkar, "Verilog HDL: A guide to Digital Design and Synthesis" second edition, Pearson IEEE 1364-2001 compliant.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teaching			schem	e	Credit assigned					
ELX	Biomedical Instrumentation		Theory Pra		ict.	Tut.	Theory	Pract	. Tu	ıt.	Total	
DLO5014			04 02		2		04		-	-	04	
l	Course Name	Examination Scheme										
			Theory									
Course Code		Internal Assessment			End	Dura tion		Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg	sem	(hrs)	work			/ Oran		
ELX	Biomedical	20	20 20		80	03			-		100	
DLO5014	Instrumentation			20	30	30					_00	

Course Objectives

- 1. Introduce the learners to basic physiology and function of various systems in human body.
- 2. Introduce the learners to Diagnostic, Pathology, Life supportive equipment and latest imaging modalities in hospitals and healthcare industry.
- 3. Motivate learners to take up live projects with medical applications which will benefit the society at large.

Course Outcomes

- Have basic knowledge about the basic structure and functions of parts of cell, generation of action potential and various bioelectric potentials.
- Builds foundation of knowledge of physiological processes such as respiratory, cardiovascular, nervous and muscular systems in human body.
- Compare various methods used for measurement of various cardiac parameters such as blood pressure, blood flow, blood volume, cardiac output and heart sounds.
- Know the basic principle of analytical instruments and will have an over view of pathology laboratory equipments such as colorimeter, spectrophotometer, blood cell counter and auto-analyser.
- Have knowledge of life support equipments such as pacemaker, defibrillator, Heart lung machine, Haemodialysis machine and baby incubator along with safety limits of micro and macro shocks and understand the importance of electrical safety in hospital equipments.

Have knowledge of imaging modalities such as X-ray, CT, MRI and Ultrasound.

Module		Contents	Time				
		Bio-Potential measurements					
	1.1	Human Cell	06				
1.		Structure of Cell, Origin of Bio-potentials, Generation of Action Potentials,.					
	1.2	Electrodes					
	1.2	Electrode-Electrolyte interface and types of bio-potential electrodes					
2.	Physiological Systems and Related Measurement						
2.	2.1	Cardiovascular system					

		Structure of Heart, Electrical and Mechanical activity of Heart, ECG				
		measurements and Cardiac arrhythmias, Design of ECG amplifier, Heart				
		sounds measurement.				
		Nervous system				
		CNS and PNS: Nerve cell, Neuronal Communication, Generation of EEG				
	2.2	and its measurement. Normal and abnormal EEG, Evoked potential.				
		Electroencephalography: EEG measurements, Electrode-placement and				
		Block diagram of EEG machine				
		Respiratory system				
	2.3	Physiology of respiration and measurements of respiratory related parameters				
		like respiration rate, Lung Volumes and capacities				
		Muscular system				
	2.4	Typical Muscle fibre Action potential				
		Electromyography: EMG measurement and block diagram.				
		Cardio-Vascular measurements				
	3.1	Blood Pressure- Direct and Indirect types.				
3.	3.2	Blood Flow- Electromagnetic and Ultrasonic type.	08			
J.	3.3	Blood Volume- Plethysmography: Impedance, Capacitive and Photoelectric				
	3.3	type				
	3.4	Cardiac Output- Fick's method, Dye-dilution and Thermo-dilution type.				
		Analytical equipment				
	4.1	Beer Lambert's law, Principle of photometry.				
4.	4.2	Photo-colorimeter : Optical diagram	05			
••	4.3	Spectrophotometer: Optical diagram				
	4.5	Blood cell counter : Coulter's counter	ı			
	4.6	Auto-analyser : Schematic diagram				
		Life-saving and Support equipment				
	5.1	Pacemaker- Types of Pacemaker, Modes of pacing and its applications.				
	5.2	Defibrillator-Types of fibrillations, Modes of operation, DC Defibrillators				
		and their applications.				
_	5.3	Heart-Lung machine: System-flow diagram and its Application during	09			
5.		surgery.	0)			
	5.4	Haemodialysis machine: Principle of operation and System-flow diagram.				
	5.5	Baby Incubator and its applications				
		Patient safety				
	5.6	Physiological effects of electrical current, Shock Hazards from electrical				
		equipments and methods of accident prevention				
		Imaging techniques				
6.	6.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	08			
	(2	applications				
	6.2	CT Scan- CT Number, Block Diagram, scanning system and applications.				

6.3	MRI- Concepts and image generation, block diagram and its applications	
6.4	Ultrasound Imaging- Modes of scanning and their applications	
	Total	48

Text books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Teaching scheme					Credit assigned					
ELXL Microcontrollers		Theory Prac		Pract.		Theory	Pract.	Tu	ıt.	Total		
501	& Applications Laboratory	02		02				01	-	-	01	
		Examination Scheme										
	Course Name	Theory										
Course		Internal				Dura	Term	Pract.	Oral	Pract.		
Code		Assessment			End	tion	work			/ Oral	Total	
		Test	Test	Avg.	sem	(hrs)	WUIK			/ Oran		
		1	2	nvg.								
ELXL501	Microcontrollers &Applications Laboratory						25			25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 501 (Microcontrollers and Applications) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. Practical and Oral exam will be based on the entire syllabus.

Suggested experiments:

- Maximum three experiments in X 51 assembly programming involving arithmetic, logical, Boolean, code-conversion etc operations.
- Minimum three experiments on interfacing of X 51 based system with peripheral IC's (ADCs, DACs etc.) peripheral actuators (relays, motors etc.) sensors (temperature, pressure etc.).

Suggested mini projects:

Programme Structure for Bachelor of Engineering (B.E.) - Electronics Engineering (Rev. 2016)

- Interfacing single LED/seven-segment display(SSD)/multiple-SSD with refreshing along-with some additional functional feature.
- Interfacing dot matrix LED for message display/ rolling message display.
- Interfacing IR emitter/receiver pair for time-period/speed calculations.
- Interfacing single key/4 key/4 X 4 matrix keyboard with some additional functional feature.
- Motors continuous, stepper, servo interfacing with speed(RPM) indication.
- Multi-function alarm clock using buzzer and LCD.
- Interfacing DAC and generating various waveforms.
- Ambient temperature indicator using LM 35 and 8-bit ADC 0808.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 502	Digital	-	2		-	01		01		
	Communication									
	Laboratory									

Subject	Subject Name		Examination Scheme							
Code			Tl	neory Marks		Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test 1 Test Ave. Of							
		2 Test 1 and								
				Test 2						
ELXL 502	Digital	-	-	-	-	25		25	50	
	Communication									
	Laboratory									

Laboratory Experiments:

Lab session includes Seven experiments and a Case study (Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum Seven experiments need to be conducted, out of which at least THREE should be software-based (Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".) Power point presentation should contain minimum of 15 slides and students should submit a report , (PPT+REPORT carry minimum of 10 marks

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested experiments based on Laboratory setups:

- 1. Line codes
- 2. Binary modulation techniques: BASK,BPSK,BFSK
- 3. M-ary modulation techniques: QPSK ,QAM
- 4. MSK

Suggested experiments based on software:

- 1. Simulation of PDF& CDF of Raleigh / Normal/ Binomial Distributions
- 2. Simulation of Eye pattern for PAM signal
- 3. Source encoding: Huffman coding for Binary symbols
- 4. Simulation of Shannon-Hartley equation to find the upper limit on the Channel Capacity
- 5. Channel Encoding: Linear Block code: code generation, Syndrome
- 6. Cyclic code-code generation, Syndrome
- 7. Channel encoding: Convolutional code-code generation from generator sequences
- 8. Simulation of BPSK/QPSK/BFSK Modulation
- 9. Simulation of Duo-binary encoder-decoder
- 10. Plot and compare BER curves for Binary/ M-ary modulation schemes
- 11. Simulation of error performance of a QPSK/BPSK/MSK Modulator

Suggested topics for presentation:

- 1. DTH
- 2. Digital Multiplexing
- 3. Satellite Launching vehicles: PSLV, GSLV
- 4. Digital TV
- 5. Digital Satellite system: VSAT
- 6. RFID

Any other related and advanced topics.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL503	Design With Linear Integrated Circuits Laboratory	-	2		-	01		01		

Course	Course	Examination Scheme										
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total			
		Int	Internal assessment		End Sem.	Work	and					
		Test	Test Avg. of		Exam		Oral					
		1	2	Test 1 and								
				Test 2								
ELXL503	Design With					25	25		50			
	Linear											
	Integrated											
	Circuits											
	Laboratory											

Term Work:

At least Six experiments based on the entire syllabus of Course ELX504 (**Design with Linear Integrated Circuits**) should be set to have well predefined inference and conclusion. Few computation/simulation based experiments are encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

A mini project based on the following topic or additional real time applications are encouraged. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments:

- 1. Experiment on op amp parameters
- 2. Experiment on design of application using op amp (Linear)
- 3. Experiment on implementation of op amp application e.g. oscillator

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Programme Structure for Bachelor of Engineering (B.E.) - Electronics Engineering (Rev. 2016)

- 4. Experiment on non linear application (e.g. comparator) of op amp
- 5. Experiment on non linear application (e.g. peak detector) of op amp
- 6. Experiment on ADC interfacing
- 7. Experiment on DAC interfacing
- 8. Experiment on IC 555
- 9. Experiment on voltage regulator (Design)
- 10. Experiment on implementation of instrumentation system (e.g. data acquisition). The topic for the mini project in the course based on the syllabus of ELX505(Design with Linear Integrated Circuits)need to be application oriented.

Course Code	Course Name		Teachir	ng schei	me	Credit assigned							
	Database ELXL Management DLO5011 Systems Laboratory		ory P	ract.	Tut.	Theory	Pract	. T	ut.	Total			
				02			01	-	-	01			
	Course Name	Examination Scheme											
Course			Theory										
Code		Internal Assessment			End	Term	Pract.		Pract.	Total			
		Test 1	Test 2	Avg	sem	work	Tract.	Oral	/ Oral				
ELXL DLO5011	Database Management Systems Laboratory					25		25		50			

At least **eight experiments** based on the entire syllabus of **ELXDLO5011** (**Data Base Management System**) should be set to have well-defined inference and conclusion. The experiments should be student-centric, and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) must perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt.	Title of the Experiments							
1	Γο analyse the sampling and reconstruction of analog signal.							
2	To study various discretization approaches (Impulse Invariance, Step Invariance, Bilinear Transformation)							
3	Study of time domain transient and steady-state performance and performance specifications.							
4	Digital controller design using Root-locus method.							
5	Modelling of discrete-time systems in state-space and conversion to various canonical forms.							

Programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

6	Discrete-time system simulation in Simulink.
7	Study digital PID controller and its implementation in MATLAB and
,	Simulink.
8	Controllability and Observability of discrete-time systems.
9	Pole placement controller design for discrete-time systems.
10	Design of deadbeat controller and observer.

Course Code	Course Name		Teachin	ıg schei	me	Credit assigned						
ELXL DLO5012	ASIC Verification	The	Theory P		Tut.	Theory	Pract	. Tu	ıt.	Total		
				02			01	-	-	01		
Course Code	Course Name	Examination Scheme										
		Theory										
		Internal Assessment			End	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg	sem	work			/ Oral			
ELXL DLO5012	ASIC Verification					25		25		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5013** (**ASIC Verification**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

List of Experiments:

- 1. Implementation of 4:1 Multiplexer in Verilog with
 - a. Gate level Modeling
 - b. Structural/ Dataflow Modeling
 - c. Behavioral Modeling
- 2. Implementation of D flip flop (Asynchronous/ Synchronous/latch) using Verilog.
- 3. Experiment to practice creating dynamic arrays, associative arrays, and queues (Test a synchronous 8-bit x64K (512kBit) RAM).
- 4. Write a test plan and test bench for ALU Design.
- 5. Experiment to practice Procedural Statements and Routines using tasks, functions and do-while loops.
- 6. Create Interfaces to connect the Test bench and Design.
- 7. Threads & IPC: Implement the following counters
 - i. UP counter
 - ii. DOWN counter
 - iii. Divide by 2 count As threads. Use Fork join, fork join_none, fork_joinany.

- 8. Threads & IPC create dynamic processes (threads) and get familiar with interprocess communication using events, semaphore and mailb
- 9. Functional Coverage write cover groups and get familiar with the coverage repor Verification of FIFO

Course Code	Course Name		Teaching scheme				Credit assigned					
ELXL DLO5013	Biomedical	The	ory P	ract.	Tut.	Theory	Pract	. Tu	ut. Total			
	Instrumentation			02		-	01	-	-	01		
	Course Name	Examination Scheme										
Course Code		Theory										
		Internal Assessment			End	Term	Pract.	Oral	Pract.	Total		
		Test	Test	Avg	sem	work	Tract.	Oran	/ Oral	Total		
		1	2	Avg								
ELXL	Biomedical					25		25		50		
DLO5013	Instrumentation	- -				25		4 5		30		

At least **eight** experiments based on the entire syllabus of **ELXDLO5014** (**Biomedical Instrumentation**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt. No.	Title of the Experiments
1	Study of X-ray Tubes
2	Design of active notch filter for line frequency
3	Design of general purpose amplifier for Bio potential measurement.
4	Design of Pacemaker using 555 timer.
5	Demonstration of Blood pressure measurement.
6	Demonstration of Electrocardiogram recording.

Programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

7	Demonstration of Electroencephalogram recording.
8	Demonstration of Electromyogram recording.
9	Demonstration of Photo-Colorimeter.
10	Demonstration of Spectrophotometer.
11	Demonstration of Auto-analyser.
12	Demonstration of Blood Cell counter.
13	Demonstration of D C Defibrillator (proto type).
14	Demonstration of Baby Incubator.
15	Demonstration of X Ray machine.
16	Demonstration of CT scanner.
17	Demonstration of MRI machine.
18	Demonstration of Ultrasound machine.